Answer:
0.1 m/s
Explanation:
Please see attached photo for explanation.
Mass of 1st cart (m₁) = 500 g
Initial velocity of 1st cart (u₁) = 0.25 m/s
Mass of 2nd cart (m₂) = 750 g
Initial velocity of 2nd cart (u₂) = 0 m/s
Velocity (v) after collision =.?
m₁u₁ + m₂u₂ = v(m₁ + m₂)
(500 × 0.25) + (750 × 0) = v(500 + 750)
125 + 0 = v(1250)
125 = 1250v
Divide both side by 1250
v = 125 / 1250
v = 0.1 m/s
Thus, the two cart will move with a velocity of 0.1 m/s after collision.
The elements which have similar behavior are Barium, strontium and beryllium.
Answer:
Explanation:
Let the tension in the string be T . At the top of the circle , total force acting on them = T + mg . This will provide centripetal force
T + mg = m v² / r
4 + .25 x 9.8 = .25 x v² / .62
6.45 = .25 v² / .62
v² = 16
v = 4 m /s .
A solar eclipse occurs when the moon crosses in front of the Sun, blocking some or all of its rays. A lunar eclipse happens when the moon is directly behind the earth, blocking the moon from receiving light. The only light comes from the light on earth's reflected shadow.
You can look at a lunar eclipse because there is very little light or none at all. You can't look at a solar eclipse because you are looking directly at the sun unless it is complete. Before totality, only some of the Sun is blocked, causing your pupils dilate to let in more light. Since they do this, more of the Sun's rays can be let in to the eye, which effectively allows your eyes to burn.
Some doctors and eye care specialists say that after someone complains of blindness after looking at a solar eclipse unaided, they can see what the Sun and moon looked like at the time that they looked at it, as it is burned onto their retinas.