Answer: 0.067 s
Explanation:s = Ut + 1/2at^2
0.6 = 9t + 0.5 *10 *t^2
Where a = g =10m/s/s
Solving the quadratic equation
5t^2 + 9t - 0.6=0,
t= 0.067 s and - 1.7 s
Of which 0.067 s is a valid time
Answer:
a) 35.94 ms⁻²
b) 65.85 m
Explanation:
Take down the data:
ρ = 1000kg/m3
a) First, we need to establish the total pressure of the water in the tank. Note the that the tanks is closed. It means that the total pressure, Ptot, at the bottom of the tank is the sum of the pressure of the water plus the air trapped between the tank rook and water. In other words:
Ptot = Pgas + Pwater
However, the air is the one influencing the water to move, so elimininating Pwater the equation becomes:
Ptot = Pgas
= 6.46 × 10⁵ Pa
The change in pressure is given by the continuity equation:
ΔP = 1/2ρv²
where v is the velocity of the water as it exits the tank.
Calculating:
6.46 × 10⁵ =1/2 ×1000×v²
solving for v, we get v = 35.94 ms⁻²
b) The Bernoulli's equation will be applicable here.
The water is coming out with the same pressure, therefore, the equation will be:
ΔP = ρgh
6.46 × 10⁵ = 1000 x 9.81 x h
h = 65.85 meters
Answer:
T=9.4 N
Explanation:
We are given that
Mass of wire,m=16.5 g=
kg
1 kg=1000g
Length of wire,l=75 cm=
m
1 m=100 cm
Wavelength of transverse wave=
m
Frequency=
Mass per unit length=


Where
frequency of wave
=Wavelength of wave
Speed of wave=v
Using the formula




Using the formula

Hence, the tension,T=9.4 N
The temperature of the oxygen gas is 243.75 K.
Using ideal gas law to explain the answer, the absolute temperature of the gas will decrease if the number of moles of the gas increases and it will increase if the volume and/or pressure of the gas increases.
The reaction of the given elements;

volume of the collected oxygen gas, V = 10 L
pressure of the gas, P = 1 atm
number of moles of the gas, n = 0.5
Using ideal law the temperature of the oxygen gas is calculated as follows;

Thus, the temperature of the gas is 243.75 K.
Using ideal gas law to explain the answer. The absolute temperature of the oxygen gas is directly proportional to the product of its pressure and volume and inversely proportional to its number of moles. That is the absolute temperature of the gas will decrease if the number of moles of the gas increases and it will increase if the volume and/or pressure increases.
Learn more here: brainly.com/question/16617695
Answer:
Rest - a body is said to be at rest, if it does not change its position with respect to its surrounding with time. Motion - a body is said to be at motion, if it changes its position with time.