Using current technology, useful parallax measurements can only be found for stars up to about 340 light years (100 parsecs) away.
Answer:
16 kg
Explanation:
M - container
m - oil mass
by definition of density ,
relative density is the ratio of the density of a substance to the density of water.
relative density = density/ density of water
density of oil = 1.2*1000 kgm⁻³ = 1200 kgm⁻³
1 Litre =10⁻³ m³
oil volume = 80 *10⁻³ m³
mass of oil = density * volume
= 1200*80*10⁻³
= 96 kg
Mass of container + mass of oil =112
mass of container = 112 - 96
= 16 kg
Answer:
See the answers below.
Explanation:
to solve this problem we must make a free body diagram, with the forces acting on the metal rod.
i)
The center of gravity of the rod is concentrated in half the distance, that is, from the end of the bar to the center there is 40 [cm]. This can be seen in the attached free body diagram.
We have only two equilibrium equations, a summation of forces on the Y-axis equal to zero, and a summation of moments on any point equal to zero.
For the summation of forces we will take the forces upwards as positive and the negative forces downwards.
ΣF = 0

Now we perform a sum of moments equal to zero around the point of attachment of the string with the metal bar. Let's take as a positive the moment of the force that rotates the metal bar counterclockwise.
ii) In the free body diagram we can see that the force acts at 18 [cm] of the string.
ΣM = 0
![(15*9) - (18*W) = 0\\135 = 18*W\\W = 7.5 [N]](https://tex.z-dn.net/?f=%2815%2A9%29%20-%20%2818%2AW%29%20%3D%200%5C%5C135%20%3D%2018%2AW%5C%5CW%20%3D%207.5%20%5BN%5D)
Answer:
a) 500
b)-500, north west
Explanation:
a) sum of F= F1+F2= 200+300= 500
b) sum of forces=0
so 200+300-500+0
Temperature doesn't do anything, the boiling point of stuff decreases. If you put water in a vacuum chainber then it will start to boil