Answer:
Approximately
(given that the magnitude of this charge is
.)
Explanation:
If a charge of magnitude
is placed in an electric field of magnitude
, the magnitude of the electrostatic force on that charge would be
.
The magnitude of this charge is
. Apply the unit conversion
:
.
An electric field of magnitude
would exert on this charge a force with a magnitude of:
.
Note that the electric charge in this question is negative. Hence, electrostatic force on this charge would be opposite in direction to the the electric field. Since the electric field points due south, the electrostatic force on this charge would point due north.
Hello!
This is a matter of superposition.
When the waves peak at the same time and place, they produce constructive interference, meaning the waves interact together in a positive way, to make a wave with Amplitude of both waves added together. When the peaks differ however, at the same time and place, then it is destructive interference and the waves essentially cancel each other out.
Hope this helps. Any questions please just ask. Thank you kindly.
Answer:
C
Explanation:
Usually when you are at the bottom you are at peak speed. It also shows that Kinetic Energy is the green bar and in picture C the green bar is highest.
Answer:
The answer is biodiversity
Explanation:
The photoelectric effect is obtained when you shine a light on a material, resulting in the emission of electrons.
The kinetic energy of the electrons depends on the frequency of the light:
K = h(f - f₀)
where:
K = kinetic energy
h = Planck constant
f = light frequency
f₀ = threshold frequency
Rearranging the formula in the form y = m·x + b, we get:
K = hf - hf₀
where:
K = dependent variable
f = <span>indipendent variable
h = slope
hf</span>₀ = y-intercept
Every material has its own threshold frequency, therefore, what stays constant for all the materials is h = Planck constant (see picture attached).
Hence, the correct answer is
C) the slope.