Answer:
a) 3.39 × 10²³ atoms
b) 6.04 × 10⁻²¹ J
c) 1349.35 m/s
Explanation:
Given:
Diameter of the balloon, d = 29.6 cm = 0.296 m
Temperature, T = 19.0° C = 19 + 273 = 292 K
Pressure, P = 1.00 atm = 1.013 × 10⁵ Pa
Volume of the balloon = 
or
Volume of the balloon = 
or
Volume of the balloon, V = 0.0135 m³
Now,
From the relation,
PV = nRT
where,
n is the number of moles
R is the ideal gas constant = 8.314 kg⋅m²/s²⋅K⋅mol
on substituting the respective values, we get
1.013 × 10⁵ × 0.0135 = n × 8.314 × 292
or
n = 0.563
1 mol = 6.022 × 10²³ atoms
Thus,
0.563 moles will have = 0.563 × 6.022 × 10²³ atoms = 3.39 × 10²³ atoms
b) Average kinetic energy = 
where,
Boltzmann constant,
Average kinetic energy = 
or
Average kinetic energy = 6.04 × 10⁻²¹ J
c) rms speed = 
where, m is the molar mass of the Helium = 0.004 Kg
or
rms speed = 
or
rms speed = 1349.35 m/s
Answer:
The pressure is constant, and it is P = 150kpa.
the specific volumes are:
initial = 0.062 m^3/kg
final = 0.027 m^3/kg.
Then, the specific work can be written as:

The fact that the work is negative, means that we need to apply work to the air in order to compress it.
Now, to write it in more common units we have that:
1 kPa*m^3 = 1000J.
-5.25 kPa*m^3/kg = -5250 J/kg.
<u><em>PRIMARY </em></u>Waves Are Detected First Because They Move So Fast.
<u><em>RIGHT</em></u> Angles To The Direction of Movement.
A Kind Of Scale Used To Measure The Amount of Seismic Energy Released By An Earthquake <u><em>RICHTER SCALE</em></u>
Answer:
D
Explanation:
transparent_objects that allows light to pass through and can you see through them