1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
horsena [70]
2 years ago
5

A scientist examines a large pot of boiling water and a small cup of boiling water. The scientist determines that the large pot

holds more water particles than the small cup. Also, the scientist discovers that both have the same amount of average kinetic energy. Based on the scientist's findings, which of the following statements is true?
a.The large pot of water has a higher temperature and more thermal energy than the small cup of water.
b.The large pot of water has a higher temperature than the small cup of water, but both have the same amount of thermal energy.
c.The large pot of water and small cup of water have the same temperature, but the small cup of water has higher thermal energy.
d.The large pot of water and small cup of water have the same temperature, but the large pot of water has higher thermal energy.
Physics
2 answers:
saul85 [17]2 years ago
7 0

Answer:

d. The large pot of water and small cup of water have the same temperature, but the large pot of water has higher thermal energy.

Explanation:

Temperature is a measure of the average kinetic energy of individual molecules. While internal energy refers to the total kinetic energy of the molecules within the object. Since in this case we have the same amount of average kinetic energy, then the large pot of water and small cup of water have the same temperature. While the large pot of water has higher thermal energy, since has more water particles than the small cup.

max2010maxim [7]2 years ago
7 0

Answer:

The large pot of water and small cup of water have the same temperature, but the large pot of water has higher thermal energy.

Explanation:

I just took the quiz and got it correct.

You might be interested in
Safety devices used in electric circuit
Sergeu [11.5K]
Fuses is the answer!
6 0
3 years ago
A pirate fires his cannon parallel to the water but 3.5 m above the water. The cannonball leaves the cannon with a velocity of 1
Bumek [7]

Answer:

202.8m

Explanation:

Given that A pirate fires his cannon parallel to the water but 3.5 m above the water. The cannonball leaves the cannon with a velocity of 120 m/s. He misses his target and the cannonball splashes into the briny deep.

First calculate the total time travelled by using the second equation of motion

h = Ut + 1/2gt^2

Let assume that u = 0

And h = 3.5

Substitute all the parameters into the formula

3.5 = 1/2 × 9.8 × t^2

3.5 = 4.9t^2

t^2 = 3.5/4.9

t^2 = 0.7

t = 0.845s

To know how far the cannonball travel, let's use the equation

S = UT + 1/2at^2

But acceleration a = 0

T = 2t

T = 1.69s

S = 120 × 1.69

S = 202.834 m

Therefore, the distance travelled by the cannon ball is approximately 202.8m.

4 0
2 years ago
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa, 500◦C, and 80 m/s, and the exit
Cerrena [4.2K]

Answer:

a) ΔEC=-23.4kW

b)W=12106.2kW

c)A=0.01297m^2

Explanation:

A)

The kinetic energy is defined as:

\frac{m*vel^2}{2} (vel is the velocity, to differentiate with v, specific volume).

The kinetic energy change will be: Δ (\frac{mvel^2}{2})=\frac{m*vel_2^2}{2}-\frac{m*vel_1^2}{2}

Δ (\frac{mvel^2}{2})=\frac{m}{2}*(vel_2^2-vel_1^2)

Where 1 and 2 subscripts mean initial and final state respectively.

Δ(\frac{mvel^2}{2})=\frac{12\frac{kg}{s}}{2}*(50^2-80^2)\frac{m^2}{s^2}=-23400W=-23.4kW

This amount is negative because the steam is losing that energy.

B)

Consider the energy balance, with a neglective height difference: The energy that enters to the turbine (which is in the steam) is the same that goes out (which is in the steam and in the work done).

H_1+\frac{m*vel_1^2}{2}=H_2+\frac{m*vel_2^2}{2}+W\\W=m*(h_1-h_2)+\frac{m}{2} *(vel_1^2-vel_2^2)

We already know the last quantity: \frac{m}{2} *(vel_1^2-vel_2^2)=-Δ (\frac{mvel^2}{2})=23400W

For the steam enthalpies, review the steam tables (I attach the ones that I used); according to that, h_1=h(T=500C,P=4MPa)=3445.3\frac{kJ}{kg}

The exit state is a liquid-vapor mixture, so its enthalpy is:

h_2=h_f+xh_{fg}=289.23+0.92*2366.1=2483.4\frac{kJ}{kg}

Finally, the work can be obtained:

W=12\frac{kg}{s}*(3445.3-2438.4)\frac{kJ}{kg} +23.400kW)=12106.2kW

C) For the area, consider the equation of mass flow:

m=p*vel*A where p is the density, and A the area. The density is the inverse of the specific volume, so m=\frac{vel*A}{v}

The specific volume of the inlet steam can be read also from the steam tables, and its value is: 0.08643\frac{m^3}{kg}, so:

A=\frac{m*v}{vel}=\frac{12\frac{kg}{s}*0.08643\frac{m^3}{kg}}{80\frac{m}{s}}=0.01297m^2

Download pdf
7 0
3 years ago
Please help me find the equations guys
Alexeev081 [22]

The line at the bottom of the picture ... probably the first line on a list of choices  .. is the correct equation.

4 0
2 years ago
The diagram shows two different types of fossils from the
ale4655 [162]

Answer:

I think the answer is A. X: Mold Y: Cast

Explanation:

Hope that helps!!!

5 0
3 years ago
Other questions:
  • How is the weight of an object in a spaceship near the moon related to the distance that the spaceship is from the moon?
    11·1 answer
  • Josie sees lightning off in the distance. A few seconds later she hears thunder. What can Josie conclude?
    14·2 answers
  • An 800-N billboard worker stands on a 4.0-m scaffold weighing 500 N and supported by vertical ropes at each end. How far would t
    8·1 answer
  • All points to the of zero on a horizontal number line are negative
    12·2 answers
  • A paper airplane has an acceleration of 5 m/s^2. If it is thrown from rest (0 m/s), how fast will it be going in 3 seconds?
    12·1 answer
  • Which process enables the boy to see over the wall?
    9·1 answer
  • uniform electric field of magnitude 365 N/C pointing in the positive x-direction acts on an electron, which is initially at rest
    14·1 answer
  • CAN SOMEONE PLEASE TELL ME WHAT THIS WHEEL IS CALLED.WILL GIVE BRAINLIEST
    9·2 answers
  • A truck is parked outside. When the sun goes down, the temperature
    14·2 answers
  • 17
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!