The question is an annuity question with the present value of the annuity given.
The
present value of an annuity is given by PV = P(1 - (1 + r/t)^-nt) /
(r/t) where PV = $61,600; r = interest rate = 9.84% = 0.0984; t = number
of payments in a year = 6; n = number of years = 11 years and P is the
periodic payment.
61600 = P(1 - (1 + 0.0984/6)^-(11 x 6)) / (0.0984 / 6)
61600 = P(1 - (1 + 0.0164)^-66) / 0.0164
61600 x 0.0164 = P(1 - (1.0164)^-66)
1010.24 = P(1 - 0.341769) = 0.658231P
P = 1010.24 / 0.658231 = 1534.78
Thus, Niki pays $1,534.78 every two months for eleven years.
The total payment made by Niki = 11 x 6 x 1,534.78 = $101,295.48
Therefore, interest paid by Niki = $101,295.48 - $61,600 = $39,695.48
The speed is the change in position divided by the time.
There are four intervals where the speed is uniform:
1) from 0 to 0,5 hours
2) from 0,5 hours to 3 hours
3) from 3 to 4 hours
4) from 4 to 7 hours
We are asked to say the average speed during the interval in which J. is traveling the fastest.
That is where the is more inclined, and that happen in the last interval. There the speed is tha change in position / the time =
(200 -0)miles/3hours = 67 mph.
If you are not sure that this is the fastest speed, you can calculate the speed in the other intervals in the same way and compare.
Answer:
29
Step-by-step explanation:
203/ 7 = 29
Step-by-step explanation:
Take the first derivative


Set the derivative equal to 0.




or

For any number less than -1, the derivative function will have a Positve number thus a Positve slope for f(x).
For any number, between -1 and 1, the derivative slope will have a negative , thus a negative slope.
Since we are going to Positve to negative slope, we have a local max at x=-1
Plug in -1 for x into the original function

So the local max is 2 and occurs at x=-1,
For any number greater than 1, we have a Positve number for the derivative function we have a Positve slope.
Since we are going to decreasing to increasing, we have minimum at x=1,
Plug in 1 for x into original function


So the local min occurs at -2, at x=1