Answer:
29.41% of Calcium and 47.04% of Oxygen
Explanation:
The percent composition of an atom in a molecule is defined as 100 times the ratio between the mass of the atom and the mass of the molecule.
The mass of the molecule of the problem (Ore) is 46.28g. That means the percent composition of Calcium is:
13.61g / 46.28g * 100 = 29.41% of Calcium
And percent composition of Oxygen is:
21.77g / 46.28g * 100 = 47.04% of Oxygen
I would think it is a heterogeneous mixture since it can't be an element since there are more than one type of atom, it can't be a compound since the leaves are not bonded together, and it can not be a homogeneous mixture since the leaves don't all blended together (the pile is not uniform) and you can distinguish all the different parts of the mixture. It can be considered a heterogeneous mixture since the leaves are mixed together (along with other things like dirt) in a non-uniform way so that you can point out the parts of the mixture and it does not look like one thing.
I hope this helps. Let me know in the comments if anything is unclear.
Answer:
As for your question, I know to forget to put the options, specifically that your question is incomplete.
Explanation:
Although it could help you by telling you that always a reaction that seeks to balance the pH, and achieve neutrality ... It is necessary to achieve a concentration of OH equal to that of H +, in this way the hydroxyl and the protons.
Answer:
E₁ ≅ 28.96 kJ/mol
Explanation:
Given that:
The activation energy of a certain uncatalyzed biochemical reaction is 50.0 kJ/mol,
Let the activation energy for a catalyzed biochemical reaction = E₁
E₁ = ??? (unknown)
Let the activation energy for an uncatalyzed biochemical reaction = E₂
E₂ = 50.0 kJ/mol
= 50,000 J/mol
Temperature (T) = 37°C
= (37+273.15)K
= 310.15K
Rate constant (R) = 8.314 J/mol/k
Also, let the constant rate for the catalyzed biochemical reaction = K₁
let the constant rate for the uncatalyzed biochemical reaction = K₂
If the rate constant for the reaction increases by a factor of 3.50 × 10³ as compared with the uncatalyzed reaction, That implies that:
K₁ = 3.50 × 10³
K₂ = 1
Now, to calculate the activation energy for the catalyzed reaction going by the following above parameter;
we can use the formula for Arrhenius equation;

If
&





E₁ ≅ 28.96 kJ/mol
∴ the activation energy for a catalyzed biochemical reaction (E₁) = 28.96 kJ/mol