Answer:
This ball will attain the same range at 60°.
Explanation:
Projectile motion: when an object is thrown in such a way that it form an angle with horizon, the force act on it that is the acceleration due gravity. This type of motion is known as projectile motion.
Range: The horizontal distance is covered by an object.
Range 
u = initial velocity = 40 m/s
θ = 30°
g = gravity =9.8 m/s²


Next,
Range
and u = 40 m/s






This ball will attain the same range at 60°.
The angles for the first-order diffraction of the shortest and longest wavelengths of visible light are 22.33 ⁰ and 49.46 ⁰ respectively.
<h3>Angle for the first order diffraction</h3>
The angle for the first order diffraction is calculated as follows;
dsinθ = mλ
sinθ = mλ/d
<h3>For shortest wavelength (λ = 380 nm)</h3>
d = 1/10,000 lines/cm
d = 1 x 10⁻⁴ cm x 10⁻² m/cm = 1 x 10⁻⁶ m/lines
sinθ = (1 x 380 x 10⁻⁹)/(1 x 10⁻⁶)
sinθ = 0.38
θ = sin⁻¹(0.38)
θ = 22.33 ⁰
<h3>For longest wavelength (λ = 760 nm)</h3>
sinθ = (1 x 760 x 10⁻⁹)/(1 x 10⁻⁶)
sinθ = 0.76
θ = sin⁻¹(0.76)
θ = 49.46 ⁰
Learn more about diffraction here: brainly.com/question/16749356
#SPJ1
Answer:
a) P=0.25x10^-7
b) R=B*N2*E
c) N=1.33x10^9 photons
Explanation:
a) the spontaneous emission rate is equal to:
1/tsp=1/3 ms
the stimulated emission rate is equal to:
pst=(N*C*o(v))/V
where
o(v)=((λ^2*A)/(8*π*u^2))g(v)
g(v)=2/(π*deltav)
o(v)=(λ^2)/(4*π*tp*deltav)
Replacing values:
o(v)=0.7^2/(4*π*3*50)=8.3x10^-19 cm^2
the probability is equal to:
P=(1000*3x10^10*8.3x10^-19)/(100)=0.25x10^-7
b) the rate of decay is equal to:
R=B*N2*E, where B is the Einstein´s coefficient and E is the energy system
c) the number of photons is equal to:
N=(1/tsp)*(V/C*o)
Replacing:
N=100/(3*3x10^10*8.3x10^-19)
N=1.33x10^9 photons
The group that is known as a salt former is the halogens group
Answer:
1419.01436 N
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

The force on the car

Magnitude of the horizontal net force that is required to bring the car to a halt is 1419.01436 N