When t=2, the ball has fallen d(2) = 16 (2²) = 64 feet .
When t=5, the ball has fallen d(5) = 16 (5²) = 400 feet .
Distance fallen from t=2 until t=5 is (400 - 64) = 336 feet.
Time period between t=2 until t=5 is (5 - 2) = 3 seconds.
Average speed of the ball from t=2 until t=5 is
(distance covered) / (time to cover the distance)
= 336 feet / 3 seconds = 112 feet per second.
That's what choice-C says.
Answer:
x-component of force is 38.18 lb where as magnitude of Force is 93.16
Explanation:
Fy of the force F exerted on the handle of the box wrench = 86 lb
Considering the triangle in Fig 1
magnitude of perpendicular = P = 12
magnitude of base = B = 5
using Pythagoras theorem
y-component of force is given given as:
The choices above are social psychology terms
that help describe the people’s actions in their everyday interaction with
people. The sentence example is:
Those computer geeks are all the same.
They
spend all day playing video games and programming their computers to serve them
breakfast. I don't think I've ever seen one reading a real book or throwing a
baseball. Why, they're almost like machines!
<span>
Is an example of stereotyping. Stereotyping
happens when a person applies a single group behavior or minority behavior to a
whole group ‘s behavior sharing the same characteristic.</span>
Answer:
0.4rad/s²
Explanation:
Angular acceleration is the time rate of change of angular velocity . In SI units, it is measured in radians per second squared (rad/s²)
w1 = 4rad/s, w2 =2rad/s, t = 5sec, r = 0.30m
a = ∆w/t
a = (w2 - w1)/t
a = (2 - 4)/5 = -2/5 =
a = - 0.4rad/s²
The -ve sign indicates a deceleration in the motion
Good luck
]A force called the effort force is applied at one point on the lever in order to move an object, known as the resistance force, located at some other point on the lever.
The way levers work is by multiplying the effort exerted by the user. Specifically, to lift and balance an object, the effort force the user applies multiplied by its distance to the fulcrum must equal the load force multiplied by its distance to the fulcrum. Consequently, the greater the distance between the effort force and the fulcrum, the heavier a load can be lifted with the same effort force.