Answer:
4050 mL
Explanation:
Given data:
Mass of glucose = 150.1 g
Molarity of solution = 0.205 M
Volume of solution = ?
Solution:
Molarity = number of moles of solute / L of solution.
Now we will calculate the moles of sugar first.
Number of moles = mass/ molar mass
Number of moles = 150.1 g/ 180.156 g/mol
Number of moles = 0.83 mol
Now we will determine the volume:
Molarity = number of moles of solute / L of solution.
0.205 M = 0.83 mol / L of solution.
L of solution = 0.83 mol / 0.205 M
L of solution = 4.05 L
L to mL conversion:
4.05 L × 1000 mL / 1 L = 4050 mL
Answer:
D. Nitrogen has 5 valence electrons.
Explanation:
Nitrogen is an element in group 5A of the periodic table. Elements in group 5A all contain just 5 valence electrons. (Electrons in the outer shell).
**Elements are organized into these groups in a periodic table based on the number of valence electrons which determines their charge. (Does not apply to transition metals)
Answer:
???
Explanation:
i would help answer but your post has no diagrams or at least there not showing up
Answer: 24.13 g Cu
Explanation:
<u>Given for this question:</u>
M of CuO = 30 g
m of CuO = 79.5 g/mol
Number of moles of CuO = (given mass ÷ molar mass) = (30 ÷ 79.5) mol
= 0.38 mol
The max number of CuO (s) that can be produced by the reaction of excess methane can be solved with this reaction:
CuO(s) + CH4(l) ------> H2O(l) + Cu(s) + CO2(g)
The balanced equation can be obtained by placing coefficients as needed and making sure the number of atoms of each element on the reactant side is equal to the number of atoms of each element on the product side
4CuO(s) + CH4(l) ----> 2H2O(l) + 4Cu(s) + CO2(g)
From the stoichiometry of the balanced equation:
4 moles of CuO gives 4 moles of Cu
1 mole of CuO gives 1 mol of Cu
0.38 mol of CuO gives 0.38 mol of Cu
Therefore, the grams of Cu that can be produced = 0.38 × molar mass of Cu
= 0.38 × 63.5 g
= 24.13 grams
Therefore, 24.13 grams of copper could be produced by the reaction of 30.0 of copper oxide with excess methane