Answer:
12.09 L
Explanation:
Step 1: Convert 826.1 mmHg to atm
We will use the conversion factor 760 mmHg = 1 atm.
826.1 mmHg × 1 atm/760 mmHg = 1.087 atm
Step 2: Convert 427.8 J to L.atm
We will use the conversion factor 101.3 J = 1 L.atm.
427.8 J × 1 L.atm/101.3 J = 4.223 L.atm
Step 3: Calculate the change in the volume
Assuming the work done (w) is 4.223 L.atm against a pressure (P) of 1.087 atm, the change in the volume is:
w = P × ΔV
ΔV = w/P
ΔV = 4.223 L.atm/1.087 atm = 3.885 L
Step 4: Calculate the final volume
V₂ = V₁ + ΔV
V₂ = 8.20 L + 3.885 L = 12.09 L
Answer:
17.5609g
Explanation:
According to the question, a sample of mass 6.814 grams is added to another sample weighing 0.08753 grams. That is weight of sample 1 + weight of sample 2;
6.814 + 0.08753 = 6.90153grams
Next, the subsequent mixture is then divided into exactly 3 equal parts i.e. 6.90153grams divided by 3
= 6.90153/3
= 2.30051grams.
One of the equal parts is 2.30051grams, which is then multiplied by 7.6335 times I.e. 2.30051 × 7.6335 = 17.5609grams
Therefore, the final mass is 17.5609grams
The largest advantage of sodium-ion batteries is the high natural abundance of sodium. This could make commercial production of sodium-ion batteries less expensive than lithium-ion batteries. As of 2020, sodium ion batteries have very little share of the battery market.
Mass of Ni = 0.015 mol Ni × (58.693 g Ni/1 mol Ni) = 0.88 g Ni
Answer:
2M
Explanation:
Molarity refers to the molar concentration of a solution. It can be calculated by using the formula as follows:
Molarity (M) = number of moles (n) ÷ volume (V)
Based on the information provided in this question, 2 moles of salt is dissolved to form 1 liter of solution. This means that n = 2mol, V = 1L
Molarity = n/V
Molarity = 2/1
Molarity = 2M