<span>Since the torque involves the product of force times lever arm, a small force can exert a greater torque than a larger force if the small force has a large enough lever arm.
With a large force exerts a small torque is a gate, hinged in its vertical line (axis). When pushed from a point near to the hinge, a very large amount is needed to open the gate.
</span><span>
</span>
(a) The minimum force F he must exert to get the block moving is 38.9 N.
(b) The acceleration of the block is 0.79 m/s².
<h3>
Minimum force to be applied </h3>
The minimum force F he must exert to get the block moving is calculated as follows;
Fcosθ = μ(s)Fₙ
Fcosθ = μ(s)mg
where;
- μ(s) is coefficient of static friction
- m is mass of the block
- g is acceleration due to gravity
F = [0.1(36)(9.8)] / [(cos(25)]
F = 38.9 N
<h3>Acceleration of the block</h3>
F(net) = 38.9 - (0.03 x 36 x 9.8) = 28.32
a = F(net)/m
a = 28.32/36
a = 0.79 m/s²
Thus, the minimum force F he must exert to get the block moving is 38.9 N.
The acceleration of the block is 0.79 m/s².
Learn more about minimum force here: brainly.com/question/14353320
#SPJ1
There are several possibilities. Here are a few that occur to me:
-- If Point-A is the summit of Pike's Peak, he may feel somewhat
short of breath.
-- If Point-A is his grandmother's house, he may feel a great sense
of pleasant anticipation.
-- If Point-A is his office on Monday morning, then he may feel
a tightening sensation in his chest.;
-- If Point-A is his home on Friday afternoon, then he feels the
effects of a slow and steady drop in his blood pressure.
I finer point might be put to it if we had any idea of where
Point-A is, and what it represents in the grand scheme
of things.