Answer:
The distance from the radio station is 0.28 light years away.
Solution:
As per the question:
Distance, d = 4 ly
Frequency of the radio station, f = 854 kHz = 
Power, P = 50 kW = 

Now,
From the relation:
P = nhf
where
n = no. of photons/second
h = Planck's constant
f = frequency
Now,

Area of the sphere, A = 
Now,
Suppose the distance from the radio station be 'r' from where the intensity of the photon is 



Now,
We know that:
1 ly = 
Thus

Answer:
THE ANSWER TERMS ARE DEFINED BLOW:-
Explanation:
MOMENTUM- IT IS THE ABILITY TO INCREASE OR DEVELOP CONSTANT FORCE.
KINETIC ENERGY:- IT IS THE ENERGY THAT A PRTICLE POSSES WHEN IT IS ACTUALLY IN MOTION.
POTENTIAL ENERGY:- IT IS THE ENERGY THAT A PARTICLE POSSES WHEN IT ACTUALLY IS IN RESTING STATE.
IN THIS ACIVITY THE SNOWBOARDER IS IN THE MOTION STATE THEREFORE HE POSSES KINETIC ENERGY AND TO MAINTAIN THAT KINEITC ENERG FOR A PERIOD OF TIME,MOMENTUM PLAYS IT'S ROLE.
Placing elements into columns, groups, rows and periods that share certain properties. properties such as gas, solid and liquid determine an element physical state at room temperature.
Heat transferred - Work done = Internal Energy
Explanation:
- If there is more heat transfer than the work done, the energy difference is called internal energy
- The first law of thermodynamics equation is given as ΔU=Q−W where, ΔU = Internal energy; Q = Heat transfer; W = Work done
- Heat = transfer of thermal energy between two bodies at different temperatures
- Work = force used to transfer energy between a system and its surroundings
- The First Law of Thermodynamics states - energy can be converted from one form to another with the interaction of heat, work and internal energy
- Energy cannot be created nor destroyed
Answer: A
Explanation:
Isotopes of different elements differ by the number of neutrons inside the nucleus.