Answer:
two-fifths over two-sevenths equals one and two-fifths miles per hour .
The equivalent algebraic monomial expression of the expression given as (-8a^5b)(3ab^4) is -24a^6b^5
<h3>How to determine an equivalent algebraic monomial expression?</h3>
The expression is given as:
(-8a^5b)(3ab^4)
Multiply -8 and 3
So, we have:
(-8a^5b)(3ab^4) = (-24a^5b)(ab^4)
Multiply a^5 and a (a^5 * a = a^6)
So, we have:
(-8a^5b)(3ab^4) = (-24a^6b)(b^4)
Multiply b and b^4
So, we have:
(-8a^5b)(3ab^4) = -24a^6b^5
Hence, the equivalent algebraic monomial expression of the expression given as (-8a^5b)(3ab^4) is -24a^6b^5
Read more about expressions at:
brainly.com/question/723406
#SPJ1
Answer:
A.
Step-by-step explanation:
when you plot the vertices;
Side AB is perpendicular to side BC
Side AB is parallel to side DC
Side AC is perpendicular to AB
Side AC is perpendicular to DC
Side AC is parallel to side BC
The conclusion made is that ABCD is a rectangle
3x8+4 because 3 times so that is 3 x the sum of 8 and 4 so 8+4 together it would be 3x8+4
Answer:
By exterior angle theorem, we have;
∠DBE = ∠H + ∠HEB = ∠ECD = ∠H + ∠HDC
∴ ∠H + ∠HEB = ∠H + ∠HDC
By addition property of equality, we have
∠HEB = ∠HDC
∠H = ∠H by reflexive property
∴ ΔHCD ~ ΔHEB by Angle Angle AA similarity postulate
∴ HE/HD = EB/DC, by the definition of similarity
Therefore, by cross multiplication, we have;
HE × DC = EB × HD
Therefore, by commutative property of multiplication, we have;
HE × DC = HD × EB
Step-by-step explanation: