Answer:
a) 40,75 atm
b) 30,11 atm
Explanation:
The Ideal Gas Equation is an equation that describes the behavior of the ideal gases:
PV = nRT
where:
- P = pressure [atm]
- V = volume [L]
- n = number of mole of gas [n]
- R= gas constant = 0,08205 [atm.L/mol.°K]
- T=absolute temperature [°K]
<em>Note: We can express this values with other units, but we must ensure that the units used are the same as those used in the gas constant.</em>
The truncated virial equation of state, is an equation used to model the behavior of real gases. In this, unlike the ideal gas equation, other parameters of the gases are considered as the <u>intermolecular forces</u> and the <u>space occupied</u> by the gas

where:
- v is the molar volume [L/mol]
- B is the second virial coefficient [L/mol]
- P the pressure [atm]
- R the gas constant = 0,08205 [atm.L/mol.°K]
a) Ideal gas equation:
We convert our data to the adecuate units:
n = 5 moles
V = 3 dm3 = 3 L
T = 25°C = 298°K
We clear pressure of the idea gas equation and replace the data:
PV = nRT ..... P = nRT/V = 5 * 0,08205 * 298/3 =40,75 atm
b) Truncated virial equation:
We convert our data to the adecuate units:
n = 5 moles
V = 3 dm3 = 3 L
T = 25°C = 298°K
B = -156,7*10^-6 m3/mol = -156,7*10^-3 L/mol
We clear pressure of the idea gas equation and replace the data:

and v = 3 L/5 moles = 0,6 L/mol

The answer is going to be 476.06.
The density is 1.12161 g/ml
Answer:

Explanation:
» The prediction is 98% correct because single displacement reaction type is highly possible.
This is because Fluorine has is more electronegative than Chlorine in Potassium Chloride. So, it strongly displaces Chlorine from the solution hence forming Chlorine gas.
» The 2% of wrong prediction maybe because of wrong reactant measurements following mole concept chemistry.
If you are asked the observation,
Observation » <u> </u><u>A</u><u> </u><u>green</u><u> </u><u>yellowish</u><u> </u><u>gas</u><u> </u><u>is</u><u> </u><u>formed</u><u>.</u>
This gas is Chlorine gas (Cl2)
Answer: Magnesium and Bromine/MgBr2 = Ionic compounds
Explanation: When atoms form together they can form between Ionic Compounds and molecules; this could depend on if they're joined by Covalent bonds as well because when atoms form with Covalent bonds, it forms Molecules.