Answer:
The final temperature is:- 7428571463.57 °C
Explanation:
The expression for the calculation of heat is shown below as:-
Where,
is the heat absorbed/released
m is the mass
C is the specific heat capacity
is the temperature change
Thus, given that:-
Mass of water = 1.75 mg = 0.00175 g ( 1 g = 0.001 mg)
Specific heat of water = 4.18 J/g°C
Initial temperature = 35 °C
Final temperature = x °C
kcal
Also, 1 kcal = 4.18 kJ = J
So, Q = J = 54340000 J
So,
Thus, the final temperature is:- 7428571463.57 °C
Molarity of solution is mathematically expressed as,
M =
We know that volume = mass/density
Given: mass of solution = 100 g, Density = 1.34 g/ml
∴ volume = 100/1.34 = 88.49 ml = 0.08849 l
Also, we know that molecular weight of sucrose = 342.3 g/mol
∴M =
= 6.979 M
Thus, molarity of solution is 6.979 M
Answer:
3.62x10⁻⁷ = Kb
Explanation:
The acid equilibrium of a weak acid, HX, is:
HX + H₂O ⇄ X⁻ + H₃O⁺
Where Ka = [X⁻] [H₃O⁺] / [HX]
And basic equilibrium of the conjugate base, is:
X⁻ + H₂O ⇄ OH⁻ + HX
Where Kb = [OH⁻] [HX] / [X⁻]
To convert Ka to Kb we must use water equilibrium:
2H₂O ⇄ H₃O⁺ + OH⁻
Where Kw = 1x10⁻¹⁴ = [OH⁻] [H₃O⁺]
Thus, we can obtain:
Kw = Ka*Kb
Solving for Kb:
Kw / Ka = Kb
1x10⁻¹⁴ / 2.76x10⁻⁸ =
3.62x10⁻⁷ = Kb
States that the properties of elements are periodic or recurring and are correlated to their atomic number.