Answer:
Correct answer is: "Cold Water"
Explanation:
EDGE 2020
1) You need to use the atomic mass of copper.
You can find it in a periodic table. It is 63.546 amu.
2) The atomic mass is the weigthed mass of the different isotopes.
This is, the atomic mass of one element is the atomic mass of each isotope times its corresponding abundance:
=> atomic mass of the element = abundance isotope 1 * atomic mass isotope 1 + abundance isotope 2 * atomic mass isotope 2 + ....+abundance isotope n * atomic mass isotope n.
3) The statement tells there are two isotopes so the abundance of one is x and the abundance of the other is 1 - x
=> 63.546 amu = x * 62.9296 amu + (1-x)*64.9278
=> 63.546 = 62.9296x + 64.9278 - 64.9278x
=> 64.9278x - 62.9296 = 64.9278 - 63.546
=> 1.9982x = 1.3818
=> x = 1.3818 / 1.9982 = 0.6915 = 69.15%
=> 1 - x = 1 - 0.6915 = 0.3085 = 30.85%
Answer:
Cu-63 69.15%;
Cu-65 : 30.85%
Explanation:
20.0 moles= 80.1 or 80.05g
5.00 moles= 20.0g
1.20×1025moles= 4923.2g
1.00 moles= 4.00g
80.0 moles= 320.2g
I really hope and think it’s E
Answer:

Explanation:
Atomic radius is the measurement from the nucleus to the outer edge of the electron cloud.
As you go down a group (vertically) the atomic radius increases because more electron shells are added. As you go across a period horizontally, the atomic radius decreases.
If we look at the halogens group (17), we see they follow this order from top to bottom:
F - Fluorine
Cl - Chlorine
Br - Bromine
I - Iodine
Since it increases down the group, iodine must have the largest atomic radius.