Answer:
-3
Explanation:
The oxidation state or oxidation number of an atom is the total number of electrons that an atom either gains or loses in order to form a chemical bond with another atom.
The complex anion here is [Cr(CN)6]3-.
Now, as the oxidation state of CN or cyanide ligand is -1, and if we suppose the oxidation state of Cr to be 'x', then; x - 6 = -3 (overall charge on the anion),
so x= +3. Hence the oxidation state of Chromium in this complex hexacyanochromium (III) anion comes out to be -3.
.
Answer is: <span>the volume of water after the solid is added</span> is 4.5 ml.
d(gold) = 8.0 g/cm³; density of gold.
m(gold) = 4 g; mass of gold.
V(gold) = m(gold) ÷ d(gold); volume of gold.
V(gold) = 4 g ÷ 8 g/cm³.
V(gold) = 0.5 cm³ = 0.5 ml.
V(water) = 4.00 ml = 4.00 cm³.
V(flask) = V(gold) + V(water).
V(flask) = 0.5 cm³ + 4 cm³.V = 4.5 cm³.
In dilution we add distilled water to decrease the concentration of required sample from high concentration to lower concentration
The law used for dilution:
M₁V₁]Before dilution = M₂V₂] After dilution
M₁ = 1.5 M
V₁ = ?
M₂ = 0.3 M
V₂ = 500 ml
1.5 * V₁ = 0.3 * 500 ml
so V₁ = 100 ml and it completed to 500 ml using 400 ml deionized water
Answer:
60 g/100 g water
Explanation:
Find 5 °C on the horizontal axis.
Draw a line vertically from that point until you reach the solubility curve for CaCl₂.
Then draw a horizontal line from there to the vertical axis.
The solubility of CaCl₂ is 60 g/100 g water.
The single most important chemical weathering agent is Carbon dioxide.
Weathering refers to the process that change the physical and chemical character of rock at or near the surface. Weathering has a dramatic impact on the composition of Earth's atmosphere. Chemical weathering removes carbon dioxide from the atmosphere, allowing it to be transformed into limestone and stored in the crust. Without chemical weathering, the elevated levels of carbon dioxide in the atmosphere would have long made Earth too hot to sustain life.