Answer:

Explanation:
It is given that,
The number of lines per unit length, N = 900 slits per cm
Distance between the formed pattern and the grating, l = 2.3 m
n the first-order spectrum, maxima for two different wavelengths are separated on the screen by 2.98 mm, 
Let d is the slit width of the grating,



For the first wavelength, the position of maxima is given by :

For the other wavelength, the position of maxima is given by :

So,



or

So, the difference between these wavelengths is 14.3 nm. Hence, this is the required solution.
Answer:
14 m/s²
Explanation:
Start with Newton's 2nd law: Fnet=ma, with F being force, m being mass, and a being acceleration. The applied forces on the left and right side of the block are equivalent, so they cancel out and are negligible. That way, you only have to worry about the y direction. Don't forget the force that gravity has the object. It appears to me that the object is falling, so there would be an additional force from going down from weight of the object. Weight is gravity (can be rounded to 10) x mass. Substitute 4N+weight in for Fnet and 1kg in for m.
(4N + 10 x 1kg)=(1kg)a
14/1=14, so the acceleration is 14 m/s²
Answer:
the power of the gravitational force depends on the factors
mass and the distance
Explanation:
The diagram is in the picture attached.
Options are:
A) 32 °C
B) 70 °C
C) 92 °C
D) 100 °C
In order to find the value required, you need to look at the diagram and follow these steps:
1) search for the value of 70 kPa on the y-axis;
2) move on a horizontal line towards the right until you reach the line D;
3) move on a vertical line down, towards the x-axis;
4) read at what value of °C you are at.
Doing so, you can see that you are at a value a little bit above 90 °C (see picture).
Hence, the correct answer is
C) 92°C.
Answer:
I'll just assume that the question is what's the velocity of the airplane before it takes off because you haven't included a question. Where u: velocity, a: acceleration, t: time
