Answer:
96.09 g/mol
Explanation:
You just need to first get the atomic weights of the elements involved. You can easily get these from your periodic table.
If you are going to do this properly, please use the weight with at least two decimal places for accuracy (e.g. 15.99 g/mol).
Also, please take note that I will be using the unit g/mol for all the weights. Thus,
Step 1
N = 14.01 g/mol
H = 1.008 g/mol
O = 16.00 g/mol
C = 12.01 g/mol
Since your compound is
(
N
H
4
)
2
C
O
3
, you need to multiply the atomic weights by their subscripts. Therefore,
Step 2
N = 14.01 g/mol × 2 =
28.02 g/mol
H = 1.008 g/mol × (4×2) =
8.064 g/mol
O = 16.00 g/mol × 3 =
48.00 g/mol
C = 12.01 g/mol × 1 =
12.00 g/mol
To get the mass of the substance, we need to add all the weights from Step 2.
Step 3
molar mass of
(
NH
4
)
2
CO
3
=
(28.02 + 8.064 + 48.00 + 12.01) g/mol
=
96.09 g/mol
this is a google search and a example i hope is helps to solve
Answer:
d
Explanation:
they either gain valence electrons or share them depending on what elements or compound they are reacting with
It is C. because the sunlight bounces off the moon causing it to be visible only at night.
Is there suppose to be a picture? Cause I do t see one
Answer:
37.1°C.
Explanation:
- Firstly, we need to calculate the amount of heat (Q) released through this reaction:
<em>∵ ΔHsoln = Q/n</em>
no. of moles (n) of NaOH = mass/molar mass = (2.5 g)/(40 g/mol) = 0.0625 mol.
<em>The negative sign of ΔHsoln indicates that the reaction is exothermic.</em>
∴ Q = (n)(ΔHsoln) = (0.0625 mol)(44.51 kJ/mol) = 2.78 kJ.
Q = m.c.ΔT,
where, Q is the amount of heat released to water (Q = 2781.87 J).
m is the mass of water (m = 55.0 g, suppose density of water = 1.0 g/mL).
c is the specific heat capacity of water (c = 4.18 J/g.°C).
ΔT is the difference in T (ΔT = final temperature - initial temperature = final temperature - 25°C).
∴ (2781.87 J) = (55.0 g)(4.18 J/g.°C)(final temperature - 25°C)
∴ (final temperature - 25°C) = (2781.87 J)/(55.0 g)(4.18 J/g.°C) = 12.1.
<em>∴ final temperature = 25°C + 12.1 = 37.1°C.</em>