Answer:
In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus a column of fluid, or an object submerged in the fluid, experiences greater pressure at the bottom of the column than at the top. This difference in pressure results in a net force that tends to accelerate an object upwards.
The pressure at a depth in a fluid of constant density is equal to the pressure of the atmosphere plus the pressure due to the weight of the fluid, or p = p 0 + ρ h g , p = p 0 + ρ h g , 14.4
Granite: 2.70 × 10 32.70 × 10 3
Lead: 1.13 × 10 41.13 × 10 4
Iron: 7.86 × 10 37.86 × 10 3
Oak: 7.10 × 10 27.10 × 10 2
You are infected by the streptococcus <em>bacterium</em>. You will suffer from a sore throat, as well as occasional rubus of the gastric musosa, unrtil you shake that thing. Shake it now, baby !
Answer: 1,500m/s
Explanation:
Relationship existing between velocity of a wave (v), wavelength(¶) and frequency(f) is
v = f¶... (1)
Since Frequency (f) is the reciprocal of the period (T);
Frequency = 1/Period i.e F = 1/T... (2)
Substituting equation 2 into 1 we have;
v = 1/T × ¶
v = ¶/T
Given wavelength ¶ = 9m
Period T = 0.006s
v = 9/0.006
v = 1,500m/s
The velocity of the wave will be 1,500m/s
We have the equation of motion
, where s is the displacement, a is the acceleration, u is the initial velocity and t is the time taken.
Here s = 300 m, u = 0 m/s, a = 9.81
Substituting

Now we have v = u+at, where v is the final velocity
Here u = 0 m/s, a= 9.81
and t = 7.82 seconds
Substituting
v = 0+9.8*7.82 = 76.68 m/s
The speed with which the penny strikes the ground = 76.68 m/s.