1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
guajiro [1.7K]
2 years ago
13

The density of a block of wood is 694 kg/m3. Its mass is 689 g. We tie the block to the bottom of a swimming pool using a single

strand of string so that the block is entirely submerged. Find the tension in the string.
Physics
1 answer:
Serhud [2]2 years ago
7 0

Answer:

<em>The tension in the string = 2.065 N</em>

Explanation:

From Archimedes principle,

R.d = density of the wood block/density of water = weight of the wood block/Upthrust of the wood block in water.

R.d = D₁/D₂ = W/U

W/U =D₁/D₂.................................. Equation 1

Where W = weight of the wood block, U = upthrust of the wood block in water, D₁ = Density of the wood block, D₂ = Density of water.

Making U the subject of the equation,

U = WD₂/D₁........................... Equation 2

Given: W =  mg = (689/1000)9.8 = 6.75 N,  D₁ = 694 kg/m³, D₂ = 1000 kg/m³.

Substituting these values into equation 2,

U = 6.75(694)/1000

U = 4684.5/1000

U = 4.685 N.

Note: Three forces act on the wood block in the pool. and they are

(i) The weight(W) acting downs

(ii) The upthrust (U) acting upwards,

(iii) The Tension (T) in the string, acting upwards.

Thus,

W = U+T

T = W - U ................................. Equation 3

Where W = 6.75 N, U = 4.685 N

T = 6.75 - 4.685

T = 2.065 N.

T = 2.065 N

<em>Thus the tension in the string = 2.065 N</em>

You might be interested in
A solid object has a mass of 104 kg and a volume of 1,278 m3. What is its density? 0.081 kg/m3 12.29 g/cm3 132912.00 g/cm3 canno
REY [17]
The density is 81.4 g/m3. Before you start plugging numbers into the density formula (D=M/V), you should convert 104 kg to grams, which ends up being 104,000 grams. Then you can plug in the 104,000 grams and 1,278 m3 into the formula. When you divide the mass by the volume, you get a really long decimal, which you can round to 81.4 g/m3, or whatever place your teacher wants you to round to.
4 0
2 years ago
Read 2 more answers
-4.3 light years what is the value of the 3??​
Radda [10]

Answer:

A light-year is a unit of distance. It is the distance that light can travel in one year. Light moves at a velocity of about 300,000 kilometers (km) each second. So in one year, it can travel about 10 trillion km. More p recisely, one light-year is equal to 9,500,000,000,000 kilometers

3 0
2 years ago
A projectile launcher has a mass of 3 kg. It fires a projectile of mass 0.08 kg horizontally at a speed of 300 m/s. a. What is t
alexdok [17]

Answer:

0

Explanation:

It’s before the projectile was fired, so nothing has happened yet.

6 0
2 years ago
By what potential difference must a proton [m_0 = 1.67E-27 kg) be accelerated to have a wavelength lambda = 4.23E-12 m? By what
Vinil7 [7]

Explanation:

1. Mass of the proton, m_p=1.67\times 10^{-27}\ kg

Wavelength, \lambda_p=4.23\times 10^{-12}\ m

We need to find the potential difference. The relationship between potential difference and wavelength is given by :

\lambda=\dfrac{h}{\sqrt{2m_pq_pV}}

V=\dfrac{h^2}{2q_pm_p\lambda^2}

V=\dfrac{(6.62\times 10^{-34})^2}{2\times 1.6\times 10^{-19}\times 1.67\times 10^{-27}\times (4.23\times 10^{-12})^2}

V = 45.83 volts

2. Mass of the electron, m_p=9.1\times 10^{-31}\ kg

Wavelength, \lambda_p=4.23\times 10^{-12}\ m

We need to find the potential difference. The relationship between potential difference and wavelength is given by :

\lambda=\dfrac{h}{\sqrt{2m_eq_eV}}

V=\dfrac{h^2}{2q_em_e\lambda^2}

V=\dfrac{(6.62\times 10^{-34})^2}{2\times 1.6\times 10^{-19}\times 9.1\times 10^{-31}\times (4.23\times 10^{-12})^2}

V=6.92\times 10^{34}\ V

V = 84109.27 volt

Hence, this is the required solution.

7 0
3 years ago
A computer base unit of mass 7.5 kg is dragged along a smooth desk. If the normal contact force is 23N and the tension in the ar
kramer
<span>If there isn't any force then the normal contact force will be 


N=m*g=7.5*9.81=73.58N 

which is 73.58-23=50.58N less 

so, there the person must pull at 23 degree upward 

break down the tension in two components, vertical and horizontal. 


vertical tension= 50.58=T*sin23 

T=50.58/sin23=129.45N</span>
7 0
2 years ago
Read 2 more answers
Other questions:
  • What does ice, liquid water and water vapor all <br> have in common?
    11·2 answers
  • What is the purpose of family?
    9·1 answer
  • Which wave property is directly related to energy
    11·2 answers
  • Light is an electromagnetic wave and travels at a speed of 3.00 × 108 m/s. The human eye is most sensitive to yellow-green light
    7·1 answer
  • An electron traveling parallel to a uniform electric field increases its speed from 2.0 * 107 m/s to 4.0 * 107 m/s over a distan
    12·2 answers
  • Can you help me answer this please​
    12·1 answer
  • Which items are matter? Pick multiple
    9·1 answer
  • A taxi
    9·1 answer
  • 9.The force of gravity between two asteroids is 10,000 newtons (N).
    12·1 answer
  • Which wave has highest energy?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!