1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
guajiro [1.7K]
3 years ago
13

The density of a block of wood is 694 kg/m3. Its mass is 689 g. We tie the block to the bottom of a swimming pool using a single

strand of string so that the block is entirely submerged. Find the tension in the string.
Physics
1 answer:
Serhud [2]3 years ago
7 0

Answer:

<em>The tension in the string = 2.065 N</em>

Explanation:

From Archimedes principle,

R.d = density of the wood block/density of water = weight of the wood block/Upthrust of the wood block in water.

R.d = D₁/D₂ = W/U

W/U =D₁/D₂.................................. Equation 1

Where W = weight of the wood block, U = upthrust of the wood block in water, D₁ = Density of the wood block, D₂ = Density of water.

Making U the subject of the equation,

U = WD₂/D₁........................... Equation 2

Given: W =  mg = (689/1000)9.8 = 6.75 N,  D₁ = 694 kg/m³, D₂ = 1000 kg/m³.

Substituting these values into equation 2,

U = 6.75(694)/1000

U = 4684.5/1000

U = 4.685 N.

Note: Three forces act on the wood block in the pool. and they are

(i) The weight(W) acting downs

(ii) The upthrust (U) acting upwards,

(iii) The Tension (T) in the string, acting upwards.

Thus,

W = U+T

T = W - U ................................. Equation 3

Where W = 6.75 N, U = 4.685 N

T = 6.75 - 4.685

T = 2.065 N.

T = 2.065 N

<em>Thus the tension in the string = 2.065 N</em>

You might be interested in
Sound travels at a rate of 340 m/s in all directions through air. Matt rings a very loud bell at one location, and Steve hears i
Vika [28.1K]

Answer:

110 m/s

Explanation:

because if you subtract 450 from 340 you get 110

6 0
2 years ago
Use Newton's laws to explain why a falling object dropped from a 57m tower accelerates initially but then reaches constant veloc
snow_lady [41]

Answer:

At the point of dropping the object, by Newton's first law due to gravitational force F_g = m × g, accelerates

By Newton's Second law the object reaches impacts on the air with the gravitational force resulting in changing momentum of m×(Final Velocity - Initial Velocity)

As the velocity increases, the rate of change of momentum becomes equivalent to the gravitational force and by Newton's third law, the action action and reaction are equal and opposite hence they cancel each other out

The body then moves at a constant uniform motion down according to Newton's first law

Explanation:

At the point the object of mass, m, is dropped from the height of the tower, the only force acting on the object is the gravitational force such that the object has an acceleration which is the acceleration due to gravity, g, and the gravitational force is therefore = m × g

As the speed of the object increases while the object is falling with the gravitational acceleration the rate at which the object cuts through layers of air which (by Newton's first law of motion, are at rest ) has some buoyancy effect also increases therefore, the object is constantly increasingly changing the momentum of the air which by Newton's second law results, at an high enough velocity, and by Newton's third law, in a force equal to the applied gravitational force

Therefore, the force of the air drag becomes equal to the gravitational force, cancelling each other out and the object then moves according to Newton;s first law, in uniform motion of a constant speed while still falling down.

5 0
3 years ago
a baseball is traveling (=20m/s) and us hit by a bat. it leaves the bat traveling (-30 m/s). What is the change in the velocity?
Tasya [4]
The change in velocity from 30 m/s north to 40 m/s south is a change of 70 m/s south
3 0
3 years ago
The lowest surface temperature in the solar system (-200°c occurs on
zimovet [89]
The lowest surface temperature in the solar system was recorded on Uranus (-224 degrees Celsius). The temperature of a planet does not only depend on the amount of solar radiation that it receives but also on the amount of heat that it gives off. Because of Uranus' orientation it absorbs little radiation which makes it colder than Neptune although Neptune is further away from the Sun. <span />
3 0
3 years ago
At resonance, what is impedance of a series RLC circuit? less than R It depends on many other considerations, such as the values
denis23 [38]

Answer:

at resonance impedence is equal to resistance and quality factor is dependent on R L AND C all

Explanation:

we know that for series RLC circuit impedance is given by

Z=\sqrt{R^2+\left ( X_L-X_C \}right )^2

but we know that at resonance X_L=X_C  

putting  X_L=X_C in impedance formula , impedance will become

Z=R so at resonance impedance of series RLC is equal to resistance only

now quality factor of series resonance is given by

Q=\frac{\omega L}{R}=\frac{1}{\omega CR}=\frac{1}{R}\sqrt{\frac{L}{C}}  so from given expression it is clear that quality factor depends on R L and C

3 0
3 years ago
Other questions:
  • If an all electric house uses 2400 kWh in a month, what will the amount of the bill for electricity be at a rate of 9.5 cents pe
    11·1 answer
  • Clouds absorb outgoing radiation emitted by earth and reradiate a portion of it back to the surface during _____.
    11·1 answer
  • When a sound wave encounters a barrier, what happens?
    8·1 answer
  • A person on a merry go round is constantly accerating toward the center
    10·2 answers
  • Which material is a conductor​
    7·1 answer
  • B-1:
    8·1 answer
  • Two tiny beads are 25 cm apart with no other charged objects or fields present. Bead A has a net charge of magnitude 10 nC and b
    14·1 answer
  • Which of the following changes would not lead to changes in the efficiency of
    7·1 answer
  • The___ of a mirror's surface determines the type of image it forms.
    7·1 answer
  • When an object is lifted 12 meters off the ground, it gains a certain amount of potential energy. If the same object is lifted 2
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!