Answer:
3.71 m/s in the negative direction
Explanation:
From collisions in momentum, we can establish the formula required here which is;
m1•u1 + m2•v2 = m1•v1 + m2•v2
Now, we are given;
m1 = 1.5 kg
m2 = 14 kg
u1 = 11 m/s
v1 = -1 m/s (negative due to the negative direction it is approaching)
u2 = -5 m/s (negative due to the negative direction it is moving)
Thus;
(1.5 × 11) + (14 × -5) = (1.5 × -1) + (14 × v2)
This gives;
16.5 - 70 = -1.5 + 14v2
Rearranging, we have;
16.5 + 1.5 - 70 = 14v2
-52 = 14v2
v2 = - 52/14
v2 = 3.71 m/s in the negative direction
Answer:
The valves prevent the backward flow of blood. These valves are actual flaps that are located on each end of the two ventricles (lower chambers of the heart). They act as one-way inlets of blood on one side of a ventricle and one-way outlets of blood on the other side of a ventricle.
Explanation:
A) a mouse, to an order of magnitude = 0.1 m ( a tenth of a meter ) That would be a big mouse but the alternatives are 1 meter or one hundredth of a meter... so go with 1/10th
<span>b) Easy = 1 meter </span>
<span>c) two choices 10m or 100 m . Go with 100 m </span>
<span>d) Stretch it out , trunk tip to tail tip - call it 10 m </span>
<span>e) Your choice 100 m or 1000 m..... These are estimates. So long as you are within one order of magnitude you can't really be given wrong. So I'd say 100m</span>
Answer:
D, using a spring scale to exert a force on the block. Measure the acceleration of the block and the applied force
Explanation:
For this you would use the net force equation acceleration=net force * mass however you will want to isolate mass so it would be acceleration/ net force to get mass. Then process of elimination comes to play.
The answer is C. Hope this helps.