The period will be the same if the amplitude of the motion is increased to 2a
What is an Amplitude?
Amplitude refers to the maximum extent of a vibration or oscillation, measured from the position of equilibrium.
Here,
mass m is attached to the spring.
mass attached = m
time period = t
We know that,
The time period for the spring is calculated with the equation:

Where k is the spring constant
Now if the amplitude is doubled, it means that the distance from the equilibrium position to the displacement is doubled.
From the equation, we can say,
Time period of the spring is independent of the amplitude.
Hence,
Increasing the amplitude does not affect the period of the mass and spring system.
Learn more about time period here:
<u>brainly.com/question/13834772</u>
#SPJ4
Answer:
The blade of sharpener is made up of iron. Iron is a magnetic material because of this pencil sharpener gets attracted by the poles of a magnet although the body is made up of plastic.
Answer:
have a component along the direction of motion that remains perpendicular to the direction of motion
Explanation:
In this exercise you are asked to enter which sentence is correct, let's start by writing Newton's second law.
circular movement
F = m a
a = v² / r
F = m v²/R
where the force is perpendicular to the velocity, all the force is used to change the direction of the velocity
in linear motion
F = m a
where the force is parallel to the acceleration of the body, the total force is used to change the modulus of the velocity
the correct answer is: have a component along the direction of motion that remains perpendicular to the direction of motion
Answer:
All of the arrows pointing up that have a red box NOT the arrow pointing down with a red box. (if the blue squigglies on the water are arrows then they count too, the picture is not too clear)
Explanation:
Answer:
The acceleration of the car, a = -3.75 m/s²
Explanation:
Given data,
The initial velocity of the airplane, u = 75 m/s
The final velocity of the plane, v = 0 m/s
The time period of motion, t = 20 s
Using the I equations of motion
v = u + at
a = (v - u) / t
= (0 - 75) / 20
= -3.75 m/s²
The negative sign indicates that the plane is decelerating
Hence, the acceleration of the car, a = -3.75 m/s²