Step-by-step explanation:
The equation of a trigonometric function is
![y = a \sin(bx + c) + d](https://tex.z-dn.net/?f=y%20%3D%20a%20%20%5Csin%28bx%20%2B%20c%29%20%2B%20d)
or
![y = a \: cos(bx + c) + d](https://tex.z-dn.net/?f=y%20%3D%20a%20%5C%3A%20cos%28bx%20%2B%20c%29%20%20%2B%20d)
Let define some variables,
D is the midline, this refers to the midpoint of the highest y value and lowest y value. Some textbooks call it the vertical translations but it is the same thing.
A is the amplitude. The amplitude is the distance from the midline to the highest y value. Some distance is non negative, the formula for the amplitude is
![|a|](https://tex.z-dn.net/?f=%20%7Ca%7C%20)
The period is how often the wave repeats itself on a interval.
Period can't be negative so the formula for period is
![\frac{2 \pi}{ |b| }](https://tex.z-dn.net/?f=%20%5Cfrac%7B2%20%5Cpi%7D%7B%20%7Cb%7C%20%7D%20)
To find the period, look at the extreme points.
The phase shift tells us if the sinusoid have been shifted to the right or left. The formula for the phase shift
![bx + c = 0](https://tex.z-dn.net/?f=bx%20%2B%20c%20%3D%200)
Solving for x gives us
![x = \frac{ - c}{b}](https://tex.z-dn.net/?f=x%20%3D%20%20%5Cfrac%7B%20%20-%20c%7D%7Bb%7D%20)
If our x is negative, we have a phase shift to the right
If our x is Positve, we have a phase shift to the left.
Let solve this equation, Let use Sine since sin(0)=0,
The smallest y value here is 0, and the highest is 2, so the amplitude is 1.
![d = 1](https://tex.z-dn.net/?f=d%20%3D%201)
Next, the distance from the max to the midline is 1, as well the min to the midline is also 1.
So
![a = 1](https://tex.z-dn.net/?f=a%20%3D%201)
We have minimum at 0, and 8, so our period is 8.
![\frac{2\pi}{b} = 8](https://tex.z-dn.net/?f=%20%5Cfrac%7B2%5Cpi%7D%7Bb%7D%20%20%3D%208)
Solve for b,
![\frac{\pi}{4} = b](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5Cpi%7D%7B4%7D%20%20%3D%20b)
Plug this in the equation.
![1 \sin( \frac{\pi}{4} x) +](https://tex.z-dn.net/?f=1%20%5Csin%28%20%5Cfrac%7B%5Cpi%7D%7B4%7D%20x%29%20%20%2B%20)
![y = \sin( \frac{\pi}{4} x) + 1](https://tex.z-dn.net/?f=y%20%3D%20%20%5Csin%28%20%5Cfrac%7B%5Cpi%7D%7B4%7D%20x%29%20%20%2B%201)
The graph passes through (4,2) so let see if that holds true for our equation
![2 = \sin( \frac{\pi}{4} (4)) + 1](https://tex.z-dn.net/?f=2%20%3D%20%20%5Csin%28%20%5Cfrac%7B%5Cpi%7D%7B4%7D%20%284%29%29%20%20%2B%201)
![2 = \sin(\pi) + 1](https://tex.z-dn.net/?f=2%20%3D%20%20%5Csin%28%5Cpi%29%20%20%2B%201)
![2 = 0 + 1](https://tex.z-dn.net/?f=2%20%3D%200%20%2B%201)
![2 = 1](https://tex.z-dn.net/?f=2%20%3D%201)
This doesn't hold true, so we must have a phase shift
Notice that
![\sin( \frac{\pi}{2} ) = 1](https://tex.z-dn.net/?f=%20%5Csin%28%20%5Cfrac%7B%5Cpi%7D%7B2%7D%20%29%20%20%3D%201)
So if we shift this pi/2 to the right, we can get our equation to be true.
![y = \sin( \frac{\pi}{4} x - \frac{\pi}{2} ) + 1](https://tex.z-dn.net/?f=y%20%3D%20%20%5Csin%28%20%5Cfrac%7B%5Cpi%7D%7B4%7D%20x%20-%20%20%5Cfrac%7B%5Cpi%7D%7B2%7D%20%29%20%20%2B%201)
This equation works so our equation is
![y = \sin( \frac{\pi}{4} x - \frac{\pi}{2} ) + 1](https://tex.z-dn.net/?f=y%20%3D%20%20%5Csin%28%20%5Cfrac%7B%5Cpi%7D%7B4%7D%20x%20-%20%20%5Cfrac%7B%5Cpi%7D%7B2%7D%20%29%20%20%2B%201)