Answer:
The minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
Explanation:
We know by equation of motion that,
Where, v= final velocity m/sec
u=initial velocity m/sec
a=Acceleration m/
s= Distance traveled before stop m
Case 1
u= 13 m/sec, v=0, s= 57.46 m, a=?
a = -1.47 m/ (a is negative since final velocity is less then initial velocity)
Case 2
u=29 m/sec, v=0, s= ?, a=-1.47 m/ (since same friction force is applied)
s = 285.94 m
Hence the minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
Answer:
Explanation:
Given data:
Let the distance traveled by the object in the second case be
In the given problem, work done by the forces are same in both the cases.
Thus,
Answer:
(a)
M = 1.898 x 10^27 kg
(b)
v = 13.74 km/s
(c) E = 0.28 N/kg
Explanation:
Time period, T = 3.55 days = 3.55 x 24 x 3600 second = 306720 s
Radius, r = 6.71 x 10^8 m
G = 6.67 x 10^-11 Nm^2/kg^2
(a)
M = 1.898 x 10^27 kg
(b) Let v be the orbital velocity
v = 13739.5 m/s
v = 13.74 km/s
(b) The gravitational field E is given by
E = 0.28 N/kg
Answer:
1. a
2. b
3. b
Explanation:
1.
Resistance is the property of a conductor to offer resistance to the flow of current. The lower the resistance better is the conductivity of wire.
We know that the resistance of a wire depends on several factor which are inter-connected by an equation as:
where:
R = resistance of the wire
length of the wire
cross sectional area of the wire
from the above relation we observe that
- Also when the temperature of the wire is significantly high then the lattice vibration cause obstruction in the path of the flowing charges and reduce the current flow.
2.
As the collision between the electrons and protons increases the speed of the flow of charges will decrease because the opposite charges attract each other and as we know that electrical current is the rate of flow of charge.
3.
Heating up of wire due to sunlight will cause lattice vibration in the conductor and will obstruct the movement of the charges which build up electric current, hence increasing the resistance of conductivity.
Answer:
109.385m
Explanation:
In 1 day, the hour hand travels 2 circles, or 4π rad in angular. The distance it travels is its angle times the radius
7.4 * 4π = 93 mm
In 1 day, the minute hand travels 24*60 = 1440 circles, or 1440 * 2π = 2880π rad in angular. The distance it travels is
12.1 * 2880π = 109478 mm
So the distance traveled by the tip of the minute hand that exceed the distance traveled by the tip of the hour hand is
109478 - 93 = 109385 mm or 109.385 m