Explanation:
It is given that,
Mass of the object, m = 0.8 g = 0.0008 kg
Electric field, E = 534 N/C
Distance, s = 12 m
Time, t = 1.2 s
We need to find the acceleration of the object. It can be solved as :
m a = q E.......(1)
m = mass of electron
a = acceleration
q = charge on electron
"a" can be calculated using second equation of motion as :




a = 16.67 m/s²
Now put the value of a in equation (1) as :


q = 0.0000249 C
or

Hence, this is the required solution.
From 50km/h to 0km/h in 0.5s we need next acceleration:
First we convert km/h in m/s:
50km/h = 50*1000/3600=13.8888 m/s
a = v/t = 13.88888/0.5 = 27.77777 m/s^2
Now we use Newton's law:
F=m*a
F=1700*27.7777 = 47222N
Velocity is defined by rate of change in the position
which we can also write as

while acceleration is defined as rate of change in velocity

so acceleration and velocity both are rate of change in position and rate of change in velocity with respect to time respectively
out of all above statement the correct answer must be
<u>Acceleration equals change in velocity divided by time. </u>
Force = mass x acceleration
force = 2500kg x (20m/s / 10m/s)
force = 2500kg x 2m/s^2
force = 5000kg m/s^2 = 5kN
i hope this is right (^^)