Answer:
B
Explanation:
The net force is the force between action and reaction and when this forces are not the same an acceleration is spurred.
Answer: (a) The magnitude of its temperature change in degrees Celsius is
.
(b) The magnitude of the temperature change (change in T = 15.1 K) in degrees Fahrenheit is
.
Explanation:
(a) Expression for change in temperature is as follows.

= 15.1 K
= 
= 
= 
Therefore, the magnitude of its temperature change in degrees Celsius is
.
(b) Change in temperature from Celsius to Fahrenheit is as follows.
F = 1.8C + 32
C = 
Since, K = C + 273
or, 

= 1.8 (15.1)
= 
or, = 
Thus, we can conclude that the magnitude of the temperature change (change in T = 15.1 K) in degrees Fahrenheit is
.
Okay, haven't done physics in years, let's see if I remember this.
So Coulomb's Law states that

so if we double the charge on

and double the distance to

we plug these into the equation to find
<span>

</span>
So we see the new force is exactly 1/2 of the old force so your answer should be

if I can remember my physics correctly.
A steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.the speed of transverse waves on the wire would be 372.77 m/s
<h3>What is a sound wave?</h3>
It is a particular variety of mechanical waves made up of the disruption brought on by the movements of the energy. In an elastic medium like the air, a sound wave travels through compression and rarefaction.
For calculating the wave velocity of the sound waves generated from the piano can be calculated by the formula
V= √F/μ
where v is the wave velocity of the wave travel on the string
F is the tension in the string of piano
μ is the mass per unit length of the string
As given in question a steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.
The μ is the mass per unit length of the string would be
μ = 4.80/(1.150×1000)
μ = 0.0041739 kg/m
By substituting the respective values of the tension on the string and the density(mass per unit length) in the above formula of the wave velocity
V= √F/μ
V=√(580/0.0041739)
V = 372.77 m/s
Thus, the speed of transverse waves on the wire comes out to be 372.77 m/s
Learn more about sound waves from here
brainly.com/question/11797560
#SPJ1
<span>action is the one car hitting the other, reaction is the other car being pushed away</span>