Answer:
D. (16.0 g + 16.0 g) × 100% / (32.1 g + 16.0 g + 16.0 g) = 49.9%
Explanation:
Step 1: Detemine the mass of O in SO₂
There are 2 atoms of O in 1 molecule of SO₂. Then,
m(O) = 2 × 16.0 g = 16.0 g + 16.0 g = 32.0 g
Step 2: Determine the mass of SO₂
m(SO₂) = 1 × mS + 2 × mO = 1 × 32.1 g + 2 × 16.0 g = 32.1 g + 16.0 g + 16.0 g = 64.1 g
Step 3: Detemine the mass percent of oxygen in SO₂
We will use the following expression.
m(O)/m(SO₂) × 100%
(16.0 g + 16.0 g) × 100% / (32.1 g + 16.0 g + 16.0 g) = 49.9%
Answer:
Covalent compounds have weak forces of attraction between the binding molecules. Thus less energy is required to break the force of bonding. Therefore covalent compounds have low melting and boiling point.
Explanation:
Solute of solution = 17.8 g
Solvn = 198 g
% = 17.8 / 198
w% = 0.089 x 100 = 8.9% by mass
hope this helps!
Answer: For the elementary reaction
the molecularity of the reaction is 2, and the rate law is rate = ![k[NO_3]^1[CO]^1](https://tex.z-dn.net/?f=k%5BNO_3%5D%5E1%5BCO%5D%5E1)
Explanation:
Order of the reaction is defined as the sum of the concentration of terms on which the rate of the reaction actually depends. It is the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions are defined as the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical reaction.
Molecularity of the reaction is defined as the number of atoms, ions or molecules that must colloid with one another simultaneously so as to result into a chemical reaction. Thus it can never be fractional.
For elementary reaction
, molecularity is 2 and rate law is ![rate=k[NO_3]^1[CO]^1](https://tex.z-dn.net/?f=rate%3Dk%5BNO_3%5D%5E1%5BCO%5D%5E1)
Explanation:
It is given that volume is 0.50 L and molarity is 0.485 M. Hence, number of millimoles will be calculated as follows.
Number of millimoles = Molarity × Volume
As there are 1000 mL in 1 L. So, 0.50 L equals 500 mL.
Therefore, putting the given values into the above formula as follows.
Number of millimoles = Molarity × Volume
= 0.485 M × 500 mL
= 242.5
Thus, we can conclude that 242.5 millimoles of copper(II) sulfate has been added by the chemist to the flask.