A patient who is prescribed a dose inhaler will find that it must be filled with a) medicine in powder form only. Works with lower (not upper) respiratory diseases only. Full of medicine used to give a fixed amount of medicine per oral inhalation. d) Medication in the form of a spray only.
Answer: Rate of decomposition of acetaldehyde in a solution is 
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
For a reaction : 
![Rate=k[A]^x](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Ex)
k= rate constant
x = order of the reaction = 2


Thus rate of decomposition of acetaldehyde in a solution is
Answer:
The maximum mass of carbon dioxide that could be produced by the chemical reaction is 70.6gCO_{2}
Explanation:
1. Write down the balanced chemical reaction:

2. Find the limiting reagent:
- First calculate the number of moles of hexane and oxygen with the mass given by the problem.
For the hexane:

For the oxygen:

- Then divide the number of moles between the stoichiometric coefficient:
For the hexane:

For the oxygen:

- As the fraction for the oxygen is the smallest, the oxygen is the limiting reagent.
3. Calculate the maximum mass of carbon dioxide that could be produced by the chemical reaction:
The calculations must be done with the limiting reagent, that is the oxygen.

Answer:
c. chloroacetate ion
Explanation:
The chloroacetic acid, ClCH₂CO₂H, is a weak acid with Ka = 1.36x10⁻³. When this weak acid is in solution with its conjugate base, ClCH₂CO₂⁻ (From sodium chloroacetate) a buffer is produced. The addition of a strong acid as the HCl produce the following reaction
HCl + ClCH₂CO₂⁻ → ClCH₂CO₂H + Cl⁻.
Where the acid reacts with the chloroacetate ion to produce more chloroacetic acid
That means, the HCl reacts with the chloroacetate ion present in the buffer solution
Right answer is:
<h3>c. chloroacetate ion</h3>