Answer:
Na₂CO₃•H₂O
Explanation:
After it is heated, the remaining mass is the mass of sodium carbonate.
30.2 g Na₂CO₃
Mass is conserved, so the difference is the mass of the water:
35.4 g − 30.2 g = 5.2 g H₂O
Convert masses to moles:
30.2 g Na₂CO₃ × (1 mol Na₂CO₃ / 106 g Na₂CO₃) = 0.285 mol Na₂CO₃
5.2 g H₂O × (1 mol H₂O / 18.0 g H₂O) = 0.289 mol H₂O
Normalize by dividing by the smallest:
0.285 / 0.285 = 1.00 mol Na₂CO₃
0.289 / 0.285 = 1.01 mol H₂O
The ratio is approximately 1:1. So the formula of the hydrate is Na₂CO₃•H₂O.
Answer:
B.Lone pair in pyrrolidine ring is localized and, therefore, is expected to be more reactive.
Explanation:
There are two nitrogen atoms bearing lone pairs of electrons in the structure of nicotine as shown in the image attached.
One nitrogen atom is found in the pyrrolidine ring. The lone pair on this nitrogen atom is localized hence it is more reactive than the lone pair of electrons found on the nitrogen atom in the pyridine ring which is delocalized a shown in the image attached to this answer.
Answer:
heat energy is released into the surrounding
Answer:
The gas occupy 2406.4 mL at 80 K.
Explanation:
Given data:
Initial volume of gas = 752 mL
Initial temperature = 25 K
Final temperature = 80 K
Final volume = ?
Solution:
The given problem is solved by using charle's law.
V₁/T₁ = V₂/T₂
V₂ = V₁. T₂ /T₁
V₂ = 752 mL × 80 k / 25 K
V₂ = 60160 mL. k/25 K
V₂ = 2406.4 mL
Answer:
The answer is C
Explanation:
Because i know look at my grade.