Answer:
not valid
Explanation:
Expert judgment is a useful validation method to verify the reliability of an investigation that is defined as “an informed opinion of people with experience in the subject, who are recognized by others as qualified experts in it, and who can give information, evidence, judgments and assessments ”
After submitting an instrument for comparison to the consultation and expert opinion, it must meet two quality criteria: validity and reliability. The validity of content is often established based on two situations, one that concerns the design of a test and the other, the validation of an instrument subject to translation and standardization procedures to adapt it to different cultural meanings. It is here that the task of the expert becomes a fundamental task to eliminate irrelevant aspects, incorporate those that are essential and / or modify those that require it.
There are several ways of expressing concentration of solution. Few of them are listed below
1) mass percentage
2) volume percentage
3) Molarity
4) Normality
5) Molality
In most of the drugs, concentration is expressed either in terms of mass percentage or volume percentage. For, solid in liquid type systems, mass percentage is convenient way of expressing concentration, while for liquid in liquid type solutions, expressing concentration in terms of volume percentage is preferred. Present system is an example of liquid in liquid type solution
Here, concentration of H2O2 is given antiseptic = 3.0 % v/v
It implies that, 3ml H2O2 is present in 100 ml of solution
Thus, 400 ml of solution would contain 4 X 3 = 12 ml H2O2
What special structures are needed for green plants?
<span>
A.chloroplasts and chlorophyll
</span>
<span>
What happens during the light reaction of photosynthesis? </span>
<span>
D. Water molecules split apart. (Not 100%)
</span>
Answer:
ΔG° = -5.4 kJ/mol
ΔG = 873.2 J/mol = 0.873 kJ /mol
Explanation:
Step 1: Data given
ΔG (NO2) = 51.84 kJ/mol
ΔG (N2O4) = 98.28 kJ/mol
Step 2:
ΔG = ΔG° + RT ln Q
⇒with Q = the reaction quatient
⇒with T = the temperature = 298 K
⇒with R = 8.314 J / mol*K
⇒with ΔG° = ΔG° (N2O4) - 2*ΔG°(NO2
)
⇒ ΔG° = 98.28 kJ/mol - 2* 51.84 kJ/mol
⇒ ΔG° = -5.4 kJ/mol
Part B
ΔG = ΔG° =RT ln Q
⇒with G° = -5.4 kj/mol = -5400 j/mol
⇒
with R = 8.314 J/K*mol
⇒with T = 298 K
⇒with Q = p(N2O4)/ [ p(NO2) ]² = 1.63/0.36² = 12.577
ΔG = -5400 + 8.314 * 298 * ln(12.577)
ΔG = -5400 + 8.314 * 298 * 2.532
ΔG = 873.2 J/mol = 0.873 kJ/mol