Volume perhaps ?
Hope this helps !
Answer:
See explanation
Explanation:
The question is incomplete because the image of the alcohol is missing. However, I will try give you a general picture of the reaction known as hydroboration of alkenes.
This reaction occurs in two steps. In the first step, -BH2 and H add to the same face of the double bond (syn addition).
In the second step, alkaline hydrogen peroxide is added and the alcohol is formed.
Note that the BH2 and H adds to the two atoms of the double bond. The final product of the reaction appears as if water was added to the original alkene following an anti-Markovnikov mechanism.
Steric hindrance is known to play a major role in this reaction as good yield of the anti-Markovnikov like product is obtained with alkenes having one of the carbon atoms of the double bond significantly hindered.
Energy diagrams are use to depict the energy changes that occur during a chemical reaction. There are two types of reaction based on the energy change, these are exothermic and endothermic reactions. In endothermic reactions energy are gained while in exothermic reactions energy are lost to the environment. To identify an exothermic reaction on a potential energy diagram, one has to compare the potential energy of the reactants and the products. If the potential energy of the product is less than that of the reactants, the reaction is exothermic.
D. 8
You can predict it from it's name "Octet" means Eight. Atom must have that number of electron to have a stable structure!
Hope this helps!