Answer:
Explanation:
Well, obviously a molecule with polar bonds can be polar in itself. It's like saying I am an atheltic person who can just reach the basketball rim with my head and also I can dunk.
But if the question is how can a molecule that in non-polar have polar bonds, well, its because the polar bonds' dipole cancels each other out. It's like a tight rope. If a person pulls in one direction, it intuitively, the rope would go in that direction. However, if a person pulls in the other direction with the same amount of force, the rope stays still. This is the same case. Although molecules can have different electronegativities, the pull of electrons in one direction is cancelled out by a pull in the opposite direction, making the net dipole 0.
This is common for main VSERP shaped molecules like linear, trigonal planar, tetrahedral, trigonal bipyramidal, and octahedral.
The answer is 14.
Hope this helps
You can use grams to moles and moles to grams. In your case just grams to moles. So since you're given grams, you would divide that by the molar mass of CO2 because that's how many grams are in one mole. The mass for Carbon is 12.0104 g/mol and Oxygen it's 15.9994 g/mol so to find the molar mass you would add 12.0104 + (2*15.9994) which gives you a molar mass of 44.0095 g/mol. You divide your given mass (132g) by the molar mass, so there's 2.9993 moles or approximately 3 moles in 132 g of CO2.
Answer:
Explanation:
Examples of compounds that contain only covalent bonds are methane (CH4), carbon monoxide (CO), and iodine monobromide (IBr). Covalent bonding between hydrogen atoms: Since each hydrogen atom has one electron, they are able to fill their outermost shells by sharing a pair of electrons through a covalent bond