Answer:
T2 = 135.1°C
Explanation:
Given data:
Mass of water = 96 g
Initial temperature = 113°C
Final temperature = ?
Amount of energy transfer = 1.9 Kj (1.9×1000 = 1900 j)
Specific heat capacity of aluminium = 0.897 j/g.°C
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
Now we will put the values in formula.
Q = m.c. ΔT
1900 j = 96 g × 0.897 j/g.°C × T2 - 113°C
1900 j = 86.112 j/°C × T2 - 113°C
1900 j / 86.112 j/°C = T2 - 113°C
22.1°C + 113°C = T2
T2 = 135.1°C
Answer:
Solution's mass = 200.055 g
[PbSO₄] = 275 ppm
Explanation:
Solute mass = 0.055 g of lead(II) sulfate
Solvent mass = 200 g of water
Solution mass = Solvent mass + Solution mass
0.055 g + 200 g = 200.055 g
ppm = μg of solute / g of solution
We convert the mass of solute from g to μg
0.055 g . 1×10⁶ μg/ 1g = 5.5×10⁴μg
5.5×10⁴μg / 200.055 g = 275 ppm
ppm can also be determined as mg of solute / kg of solution
It is important that the relation is 1×10⁻⁶
Let's verify: 0.055 g = 55 mg
200.055 g = 0.200055 kg
55 mg / 0.200055 kg = 275 ppm
Answer: The volume of 0.235 M
needed to titrate 40.0 mL of 0.0500 M
is 8.51 ml
Explanation:
To calculate the volume of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is 
We are given:

Putting values in above equation, we get:

Thus volume of 0.235 M
needed to titrate 40.0 mL of 0.0500 M
is 8.51 ml
Answer:
diplode-diplode interactions
Explanation: