Answer:
Part a)

Part b)
t = 12 s
Explanation:
Part a)
Tension in the rope at a distance x from the lower end is given as

so the speed of the wave at that position is given as

here we know that

now we have


Part b)
time taken by the wave to reach the top is given as




Answer:
The speed of space station floor is 49.49 m/s.
Explanation:
Given that,
Mass of astronaut = 56 kg
Radius = 250 m
We need to calculate the speed of space station floor
Using centripetal force and newton's second law




Where, v = speed of space station floor
r = radius
g = acceleration due to gravity
Put the value into the formula


Hence, The speed of space station floor is 49.49 m/s.
Answer:
6.23x10^6Pa
Explanation:
Data obtained from the question include:
F (force) = 490N
r (radius) = 0.005m
A (area of the circlular heel) =?
P (pressure) =.?
First, we'll begin by calculating the area of the circlular heel. This is illustrated below:
Area of circle = πr^2
Area = 22/7 x (0.00)^2
Area = 7.86x10^-5m^2
Pressure is simply force per unit area. It represented mathematically as
Pressure = Force /Area
Pressure = 490/7.86x10^-5
Pressure = 6.23x10^6N/m2
Recall: 1N/m2 = 1Pa
Therefore, 6.23x10^6N/m2 = 6.23x10^6Pa
Therefore, the woman exert a pressure of 6.23x10^6Pa on the floor
Answer:
Gravity stronger closer to the core of the earth
Explanation:
The gravity applied to the feet is stronger than to the upper part of the body for example the brain because of the distance it is between the body part and the core of the earth where the gravity force is pulling towards. Even though the difference between the gravity force between the brain and the feet is minimal it is still a greater force at the feet than at the brain