1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ss7ja [257]
3 years ago
7

This problem is based on the whole idea of pressure but I’m having trouble on when the area circle formula is included.

Physics
1 answer:
Mice21 [21]3 years ago
8 0

Answer:

6.23x10^6Pa

Explanation:

Data obtained from the question include:

F (force) = 490N

r (radius) = 0.005m

A (area of the circlular heel) =?

P (pressure) =.?

First, we'll begin by calculating the area of the circlular heel. This is illustrated below:

Area of circle = πr^2

Area = 22/7 x (0.00)^2

Area = 7.86x10^-5m^2

Pressure is simply force per unit area. It represented mathematically as

Pressure = Force /Area

Pressure = 490/7.86x10^-5

Pressure = 6.23x10^6N/m2

Recall: 1N/m2 = 1Pa

Therefore, 6.23x10^6N/m2 = 6.23x10^6Pa

Therefore, the woman exert a pressure of 6.23x10^6Pa on the floor

You might be interested in
What is the current I(3τ), that is, the current after three time constants have passed? The current in the circuit will approach
Olin [163]

Complete Question

The complete question is shown on the first uploaded image

Answer:

a

I(\tau)=0.051 A

b

I(3 \tau)=0.076 A

c

I_c= 0.08 A

Explanation:

From the question we are told that

                I(t) = \frac{e}{R}(1-e^{\frac{t}{\tau} }) ; \ Where \ \tau = L/R

From the question we are told to find I(\tau) when t=0  equals the time constant (\tau)

That is to obtain I(\tau).This  is mathematically represented as

                   I(\tau = t)  = \frac{\epsilon}{R} (1- e^{-\frac{\tau}{\tau} })

             Substituting 12 V for \epsilon and 150Ω for R

                     I(\tau) = \frac{12}{150} (1- e^{-1})

                            =0.051 A

From the question we are told to find I(3 \tau) when t=0  equals the 3 times the  time constant (\tau)

That is to obtain I(3\tau).This  is mathematically represented as

                 I(\tau = t)  = \frac{\epsilon}{R} (1- e^{-\frac{3\tau}{\tau} })

                  I(\tau) = \frac{12}{150} (1- e^{-3})

                        =0.076 A

As tends to infinity \frac{\infty}{\tau}  = \infty

So I_c would be mathematically evaluated as

               I_c=I(\infty) = \frac{12}{150} (1- e^{- \infty})

                   = \frac{12}{150}

                   = 0.08 A

5 0
3 years ago
As a rubber band and moves forward, which of the following is true
Yuki888 [10]

Answer:

It can go back to it's original shape

Explanation:

7 0
3 years ago
Which forces are acting on the student and the skateboard in the instant in which they are pushing off the wall? (Select all tha
diamong [38]
E all of the answers above correlate to the student and his skateboard
7 0
2 years ago
Read 2 more answers
Sandra is having difficulty with her reading assignment because she does not fully understand the language. Which online tool wo
Ede4ka [16]

Answer:

The answer is a TRANSLATION TOOL or D

Explanation:

6 0
2 years ago
Read 2 more answers
When a sinusoidal wave with speed 20 m/s , wavelength 35 cm and amplitude of 1.0 cm passes, what is the maximum speed of a point
vova2212 [387]

To solve this problem it is necessary to apply the concepts related to frequency as a function of speed and wavelength as well as the kinematic equations of simple harmonic motion

From the definition we know that the frequency can be expressed as

f = \frac{v}{\lambda}

Where,

v = Velocity \rightarrow 20m/s

\lambda = Wavelength \rightarrow 35*10^{-2}m

Therefore the frequency would be given as

f = \frac{20}{35*10^{-2}}

f = 57.14Hz

The frequency is directly proportional to the angular velocity therefore

\omega = 2\pi f

\omega = 2\pi *57.14

\omega = 359.03rad/s

Now the maximum speed from the simple harmonic movement is given by

V_{max} = A\omega

Where

A = Amplitude

Then replacing,

V_{max} = (1*10^{-2})(359.03)

V_{max} = 3.59m/s

Therefore the maximum speed of a point on the string is 3.59m/s

8 0
3 years ago
Other questions:
  • *a small object with a momentum of 6 kg∙m/s to the west approaches head-on a large object at rest. the small object bounces stra
    12·1 answer
  • Find the current passing through a circuit consisting of a battery and one resistor. The resistor has a resistance of 2 ohms and
    11·2 answers
  • Why nucleus density is constant. Explain
    8·1 answer
  • BWhat Do You Get When You Multiply An Object's mass times the acceleration?
    13·1 answer
  • An athlete rotates a 1.00-kg discus along a circular path of radius 1.09 m. The maximum speed of the discus is 17.0 m/s. Determi
    7·1 answer
  • ¿ que es una onda mecánica y como es su gráfica? ¿qué es la amplitud y la frecuencia ?
    5·1 answer
  • PLEASE HELP!! PHYSICS QUIZ!
    9·2 answers
  • Which of the following prefixes represents the biggest number?
    14·1 answer
  • HELP WILL MARK BRAINLIEST
    14·1 answer
  • Hazel recently read an article that claimed that radio waves can cause electron displacement. Based on
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!