Answer:
time period is increased so the clock will become SLOW
Explanation:
As we know that the time period of the simple pendulum is given by the formula

here we know that
L = distance of the pendulum bob from the hinge
g = acceleration due to gravity
now here the bob slide down so that the length of the pendulum is being increased
so time period T of the pendulum is also increased
so here the pendulum will take more time to oscillate or to complete one oscillation
so clock will become SLOW
Answer:
Explanation:
The sensor contains an LDR which has a resistance of 10kohlms in daylight and 100kohlms in the dark.
If the resistor in the circuit is 1 megaohlm, the total resistance in daylight and darkness will be 1.01 megaohms and 1.1 megaohlms.
The percentage difference = (1.1-1.01)/1.1*100% = 8.18%
If the resistor in the circuit is 25 kohlm, the total resistance in daylight and darkness will be 35 kohms and 125 kohlms.
The percentage difference = (125-35)/125*100% = 72%
With the input p.d to the sensing circuit fixed at 12 v, the sensing current will change according to the total resistance. A 72% difference is much more detectable. So the 25 kohm resistor is the better choice.
For rectilinear motions, derived formulas all based on Newton's laws of motion are formulated. The equation for acceleration is
a = (v2-v1)/t, where v2 and v1 is the final and initial velocity of the rocket. We know that at the end of 1.41 s, the rocket comes to a stop. So, v2=0. Then, we can determine v1.
-52.7 = (0-v1)/1.41
v1 = 74.31 m/s
We can use v1 for the formula of the maximum height attained by an object thrown upwards:
Hmax = v1^2/2g = (74.31^2)/(2*9.81) = 281.42 m
The maximum height attained by the model rocket is 281.42 m.
For the amount of time for the whole flight of the model rocket, there are 3 sections to this: time at constant acceleration, time when it lost fuel and reached its maximum height and the time for the free fall.
Time at constant acceleration is given to be 1.41 s. Time when it lost fuel covers the difference of the maximum height and the distance travelled at constant acceleration.
2ax=v2^2-v1^2
2(-52.7)(x) = 0^2-74.31^2
x =52.4 m (distance it covered at constant acceleration)
Then. when it travels upwards only by a force of gravity,
d = v1(t) + 1/2*a*t^2
281.42-52.386 = (0)^2+1/2*(9.81)(t^2)
t = 6.83 s (time when it lost fuel and reached its maximum height)
Lastly, for free falling objects, the equation is
t = √2y/g = √2(281.42)/9.81 = 7.57 s
Therefore, the total time= 1.41+6.83+7.57 = 15.81 s
Answer:
Explanation:
Basically, Kinetic Molecular Theory says that gas particles are in constant motion and that they show perfectly elastic collisions.
An elastic collision is a collision in which there is no net loss in kinetic energy in the system as a result of the collision.
So the kinetic molecular theory says that gas particles stay moving constantly and don't lose energy when they run into each other.
Hope this helps!
Answer:
no of atoms
Explanation:
for each amonia molecule one nitrogen atom bind with 3 hydrogen atoms