Answer:
The resulting solution is basic.
Explanation:
The reaction that takes place is:
First we <u>calculate the added moles of HNO₃ and KOH</u>:
- HNO₃ ⇒ 12.5 mL * 0.280 M = 3.5 mmol HNO₃
- KOH ⇒ 5.0 mL * 0.920 M = 4.6 mmol KOH
As <em>there are more KOH moles than HNO₃,</em> the resulting solution is basic.
Answer:
0.11 mol
Explanation:
<em>This is the chemical formula for acetic acid (the chemical that gives the sharp taste to vinegar): CH₃CO₂H. An analytical chemist has determined by measurements that there are 0.054 moles of oxygen in a sample of acetic acid. How many moles of hydrogen are in the sample?</em>
Step 1: Given data
- Formula of acetic acid: CH₃CO₂H
- Moles of oxygen in the sample of acetic acid: 0.054 moles
Step 2: Establish the appropriate molar ratio
According to the chemical formula of acetic acid, the molar ratio of H to O is 4:2.
Step 3: Calculate the moles of atoms of hydrogen
We will use the theoretical molar ratio for acetic acid.
0.054 mol O × (4 mol H/2 mol O) = 0.11 mol H
Physical properties include: appearance, texture, color, boiling point, melting point, ect.
Answer:
D.
Explanation:
INCREASE OF SOLAR WINDS When the sun is more active
A solid from the liquid it suspends can be separated by filtration.