Answer:
a) F = 3.2 10⁻¹⁰ N
, b) v = 9.9 10⁷ m / s
Explanation:
a) The electric force is
F = q E
The electric field is related to the potential reference
V = E d
E = V / d
Let's replace
F = e V / d
Let's calculate
F = 1.6 10⁻¹⁹ 28 10³ / 1.4 10⁻²
F = 3.2 10⁻¹⁰ N
b) For this part we can use kinematics
v² = v₀ + 2 a d
v = √ 2 ad
Acceleration can be found with Newton's second law
e V / d = m a
a = e / m V / d
a = 1.6 10⁻¹⁹ / 9.1 10⁻³¹ 28 10³ / 1.4 10⁻²
a = 3,516 10⁻¹⁷ m / s²
Let's calculate the speed
v = √ (2 3,516 10¹⁷ 1.4 10⁻²)
v = √ (98,448 10¹⁴)
v = 9.9 10⁷ m / s
Answer:
True
Explanation:
With the increase in temperature hypothalamus fails and heatstroke occurs due to this failure. Hypothalamus is the region of our brain that act as a thermostat. It co-ordinates our physiological response to excessive heat. When the person’s temperature reaches to 104 degrees then it causes heatstroke. This heatstroke is very sudden and can kill person. Hence, we can conclude that when person’s temperature reaches to 104 degrees chances of survival decreases dramatically.
Answer:1.71 m/s
Explanation:
Given
mass of Susan 
Inclination 
Tension 
coefficient of Friction 
Resolving Forces Along x axis

where

since there is no movement in Y direction therefore

and 
Thus 


Work done by applied Force is equal to change to kinetic Energy




Answer:
v = 3.04 m/s
Explanation:
given,
mass of the block, M = 6.6 Kg
horizontal force, F = 12.2 N
distance, L = 2.5 m
initial speed = 0 m/s
speed of the block,v = ?
we now
Work done is equal to change in Kinetic energy.
Work done = Force x displacement
W = Δ K E
Δ K E = Force x displacement


3.3 v² = 30.5
v² = 9.242
v = 3.04 m/s
speed of the block is equal to 3.04 m/s
You use more significant figures. 5 sigfigs (1.0985) is more accurate than 2 sigfigs (1.0)