Answer: 1766.667 Ω = 1.767kΩ
Explanation:
V=iR
where V is voltage in Volts (V), i is current in Amps (A), and R is resistance in Ohms(Ω).
3mA = 0.003 A
Rearranging the equation, we get
R=V/i
Now we are solving for resistance. Plug in 0.003 A and 5.3 V.
R = 5.3 / 0.003
= 1766.6667 Ω
= 1.7666667 kΩ
The 6s are repeating so round off to whichever value you need for exactness.
Answer:
Distributes a floor load or weight
Explanation:
Answer:
Depends on the battery and the current type.
Is it AC or DC?
Explanation:
Could you mark as brainiest.
I need it for my account
Thank you! :)
Answer:

Explanation:
The power needed to make the escalator working is obtained by means of the Work-Energy Theorem:




The mechanical efficiency of the escalator is:


Answer:
W= 8120 KJ
Explanation:
Given that
Process is isothermal ,it means that temperature of the gas will remain constant.
T₁=T₂ = 400 K
The change in the entropy given ΔS = 20.3 KJ/K
Lets take heat transfer is Q ,then entropy change can be written as

Now by putting the values

Q= 20.3 x 400 KJ
Q= 8120 KJ
The heat transfer ,Q= 8120 KJ
From first law of thermodynamics
Q = ΔU + W
ΔU =Change in the internal energy ,W=Work
Q=Heat transfer
For ideal gas ΔU = m Cv ΔT]
At constant temperature process ,ΔT= 0
That is why ΔU = 0
Q = ΔU + W
Q = 0+ W
Q=W= 8120 KJ
Work ,W= 8120 KJ