Answer:
The constant here is the study outline
Explanation:
In scientific research, the constant variable is that part/variable of the experiment that does not change or is set not to change. Examples include temperature, environment or height.
Assuming the scenery described in this question is an experiment. All the groups presented are bound by a constant during the experiment. The constant here is the study outline. The study outline provided to the students is not going to change.
NOTE: There could be confusion as regards the answer being the final exam grade but that will be the dependent variable as that will be the outcome of the experiment while the time spent to study will be the independent variable.
Answer:
Superficial design improvements are typically only trivial changes to a design, while functional design improvements can change the way a product or process is used to significantly enhance performance.
Explanation:
As a PC board designer, I would sometimes spend a certain amount of time making traces have shorter routes, or fewer layer changes or bends. (I wanted to make the layout "pretty.") In some cases, these changes are superficial, affecting the appearance only. In some cases, they are functional, reducing crosstalk or emissions or susceptibility to interference.
I deal with a web site that seems to be changing all the time (Brainly). In many cases, the same information is rearranged on the page—a superficial change. In other cases, the information being displayed changes, or the way that certain information is accessed changes. These are functional changes. (Sometimes, they "enhance performance," and sometimes they don't, IMO.)
In short ...
<em>Superficial design improvements are typically only trivial changes to a design, while functional design improvements can change the way a product or process is used to significantly enhance performance.</em>
Answer:
Maximum number of vehicle = 308
Explanation:
See the attached file for the calculation.
Different lever designs can be engineered and developed to alter the brake pedal effort required of the driver by using different levels of <u>mechanical advantage</u>.
<h3>What is
mechanical advantage?</h3>
Mechanical advantage can be defined as a ratio of the output force of a lever to the force acting on it (input force or effort), assuming no losses due to wear, flexibility, tear or friction.
This ultimately implies that, different lever designs can be suitably engineered and developed to alter the brake pedal effort (input force) that is required of the driver, especially by using different levels of <u>mechanical advantage</u>.
Read more on mechanical advantage here: brainly.com/question/18345299
#SPJ1
Where’s the sheet or the picture ?