Ke = (1/2)mv²
m = 100kg, v = 10 km/s = 10*1000 = 10000m/s
Ke = (1/2)*100*10000
Ke = 500000 Joules
Explanation:
It is given that,
Mass of the football player, m = 92 kg
Velocity of player, v = 5 m/s
Time taken, t = 10 s
(1) We need to find the original kinetic energy of the player. It is given by :


k = 1150 J
In two significant figure, 
(2) We know that work done is equal to the change in kinetic energy. Work done per unit time is called power of the player. We need to find the average power required to stop him. So, his final velocity v = 0
i.e. 

P = 115 watts
In two significant figures, 
Hence, this is the required solution.
Guessing you want the average speed. We can multiple each speed by the time we spent going that speed, and them all together and then divide by the total time we spent in traffic to get the average speed. We spent a total of 7.5 minutes in traffic, so average speed = (12*1.5+0*3.5+15*2.5)/7.5 = 7.4 m/s
The acceleration of a 0.90 g drop of blood in the fingertips at the bottom of the swing is the sum of the acceleration of the movement of the finger and the acceleration of gravity. In this case, this is different when the finger goes down, since the acceleration now becomes the difference between the two.
Answer:
Velocity is a change in displacement over change in time and uses the units m/s.
Both are rates of change and can be positive or negative.
Acceleration is a change in velocity over change in time and uses the units m/s².
Explanation:
Velocity is the change in displacement over change in time, this makes it a rate of change. It can be positive or negative because it is a vector quantity. It uses the units m/s because that is a displacement unit over a time unit.
Acceleration is the change in velocity over change in time, this makes it a rate of change. It can be positive or negative because it is also a vector quantity. It uses the units m/s² (m/s/s) because that is a velocity unit over a time unit.