Answer:0kgm/s
Explanation:
Momentum before collision=momentum after collision
Since the momentum of the two blocks have positive sign, it means they are moving in thesame direction
Therefore we use the formula
Momentum (A)+momentum (B)=Momentum (A)+momentum (B)
25+35=60+momentum (B)
60=60+momentum (B)
Momentum (B)=60-60
Momentum (B)=0kgm/s
Answer:
1.43 s
Explanation:
The time it takes for the container to reach the ground is determined only by the vertical motion of the container, which is a free-fall motion, so a uniformly accelerated motion with a constant acceleration of g=9.8 m/s^2 towards the ground.
The vertical distance covered by an object in free fall is given by

where
u = 0 is the initial vertical speed
t is the time
a= g = 9.8 m/s^2 is the acceleration
since u=0, it can be rewritten as

And substituting S=10.0 m, we can solve for t, to find the duration of the fall:

(a) The acceleration of the system is determined as 1.58 m/s².
(b) The relative weight of P is pounds is determined as 0.14 lb.
<h3>
Acceleration of the system</h3>
The acceleration of the system is calculated as follows;
W - T = m₂a --- (1)
T = m₁a ----(2)
μmgsinθ - m₁a = m₂a
(0.3 x 3 x 9.8 x sin40) - (0.4 + 0.2)a = 3a
5.67 - 0.6a = 3a
5.67 = 3.6a
a = 5.67/3.6
a = 1.58 m/s²
<h3>
Relative Weight of P</h3>
W = ma
W = 0.4 x 1.58
W = 0.632 N = 0.14 lb
Learn more about weight here: brainly.com/question/2337612
#SPJ1
Answer:
Da=(1/4)Db
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
When s = Da, t = t

When s = Db, t = 2t

Dividing the two equations

Hence, Da=(1/4)Db
Explanation:
Make a table, listing the x and y coordinates of each square's center of gravity and its mass. Multiply the coordinates by the mass, add the results for each x and y, then divide by the total mass.

The x-coordinate of the center of gravity is 15/14 a.
The y-coordinate of the center of gravity is 47/42 a.