A) 140 degrees
First of all, we need to find the angular velocity of the Ferris wheel. We know that its period is
T = 32 s
So the angular velocity is

Assuming the wheel is moving at constant angular velocity, we can now calculate the angular displacement with respect to the initial position:

and substituting t = 75 seconds, we find

In degrees, it is

So, the new position is 140 degrees from the initial position at the top.
B) 2.7 m/s
The tangential speed, v, of a point at the egde of the wheel is given by

where we have

r = d/2 = (27 m)/2=13.5 m is the radius of the wheel
Substituting into the equation, we find

C, electrons. Ion<span> of an </span>element has<span> the </span>same<span> nucleus, the </span>same number<span> of protons and neutrons, with a </span>different number<span> of electrons.</span>
An object's momentum is the product of its mass and its velocity:
p = mv
p is its momentum, m is its mass, and v is its velocity.
Given values:
p = -80kg×m/s
m = 8kg
Plug in these values and solve for v:
-80 = 8v
v = -10m/s
Choice D
To solve this problem it is necessary to apply the concepts related to the Centrifugal Force and the Gravitational Force. Since there is balance on the body these two Forces will be equal, mathematically they can be expressed as


Where,
m = Mass
G =Gravitational Universal Constant
M = Mass of the Planet
r = Distance/Radius
Re-arrange to find the velocity we have,

At the same time we know that the period is equivalent in terms of the linear velocity to,


If our values are that the radius of mars is 3400 km and the distance above the planet is 100km more, i.e, 3500km we have,



Replacing we have,



Therefore the correct answer is C.