This the balanced equation based on the question

.
We then proceed with the following calculations
The answer is
is produced.
The Nernst equation allows us to predict the cell potential for voltaic cells under conditions other than the standard conditions of 1M, 1 atm, 25°C. The effects of different temperatures and concentrations may be tracked in terms of the Gibbs energy change ΔG. This free energy change depends upon the temperature & concentrations according to ΔG = ΔG° + RTInQ where ΔG° is the free energy change under conditions and Q is the thermodynamic reaction quotient. The free energy change is related to the cell potential Ecell by ΔG= nFEcell
so for non-standard conditions
-nFEcell = -nFE°cell + RT InQ
or
Ecell = E°cell - RT/nF (InQ)
which is called Nernst equation.
B3+ is isoelectronic with helium.
Isoelectronicity is the phenomenon whereby two or more molecular entities have the same number of electrons or similar electronic configuration regardless of the nature of the elements that are involved.
In the question given above, helium and B3+ have the same number of electrons. Helium has two electrons. Boron has five electrons but it has given away three of the electrons [that is why it has a charge of +3] and it now has only two left.
Answer:
2m/s²
Explanation:
When an object starts or at its state of rest it has an Initial speed U = 0
Final speed = 6m/s
total time taken for the acceleration = 3s
Acceleration =?
Acceleration is the change in velocity (speed) with time
OR
Time rate of change of velocity
Acceleration = <u>Change in Speed(velocity)</u>
Time taken
Hence,
Acceleration = <u> </u><u> </u><u>V - </u><u>U</u><u> </u><u> </u>
t
a = <u>6</u><u> </u><u>-</u><u> </u><u>0</u>
3
a = <u>6</u><u> </u><u> </u>
3
a = 2m/s²
TRUE its glucose if they have sunlight