Answer:
a. the magnitude of the force experienced by the muon is 2.55 × 10⁻¹⁹N
b. this force compare to the weight of the muon; the force is 1.38 × 10⁸ greater than muon
Explanation:
F= ma
v²=u² -2aS
(1.56 ✕ 10⁶)²=(2.40 ✕ 10⁶)²-2a(1220)
a=1.36×10⁹m/s²
recall
F=ma
F = 1.88 ✕ 10⁻²⁸ kg × 1.36×10⁹m/s²
F= 2.55 × 10⁻¹⁹N
the magnitude of the force experienced by the muon is 2.55 × 10⁻¹⁹N
b. this force compare to the weight of the muon
F/mg= 2.55 × 10⁻¹⁹/ (1.88 ✕ 10⁻²⁸ × 9.8)
= 1.38 × 10⁸
A. 320 g
B. 160 g
C. 80 g
D. 40 g
Assuming the driver starts slamming the brakes immediately, the car moves by uniformly decelerated motion, so we can use the following relationship

(1)
where
a is the deleceration
S is the distance covered after a time t

is the velocity at time t

is the initial speed of the car
The accident is 80 m ahead of the car, so the minimum deceleration required to avoid the accident is the value of a such that S=80 m and

(the car should stop exactly at S=80 m to avoid the accident). Using these data, we can solve the equation (1) to find a:

And the negative sign means it is a deceleration.
Answer:
Option D. 23.5 m
Explanation:
From the question given above, the following data were obtained:
Frequency = 200 Hz
Speed of sound in brass = 4700 m/s
Wavelength of sound in brass =?
We can obtain the wavelength of the sound in the brass by using the following formula as illustrated below:
Wave speed = wavelength × frequency
4700 = wavelength × 200
Divide both side by 200
Wavelength = 4700 / 200
Wavelength = 23.5 m
Thus, the wavelength of the sound in the brass is 23.5 m