1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GaryK [48]
3 years ago
13

A cosmic ray muon with mass mμ = 1.88 ✕ 10−28 kg impacting the Earth's atmosphere slows down in proportion to the amount of matt

er it passes through. One such particle, initially traveling at 2.40 ✕ 106 m/s in a straight line, decreases in speed to 1.56 ✕ 106 m/s over a distance of 1.22 km.
(a) What is the magnitude of the force experienced by the muon?
(b) How does this force compare to the weight of the muon?
|F|/Fg =______
Physics
1 answer:
anyanavicka [17]3 years ago
6 0

Answer:

a. the magnitude of the force experienced by the muon is 2.55 × 10⁻¹⁹N

b.  this force compare to the weight of the muon; the force is 1.38 × 10⁸ greater than muon

Explanation:

F= ma

v²=u² -2aS

(1.56 ✕ 10⁶)²=(2.40 ✕ 10⁶)²-2a(1220)

a=1.36×10⁹m/s²

recall

F=ma

F = 1.88 ✕ 10⁻²⁸ kg × 1.36×10⁹m/s²

F= 2.55 × 10⁻¹⁹N

the magnitude of the force experienced by the muon is 2.55 × 10⁻¹⁹N

b.  this force compare to the weight of the muon

F/mg= 2.55 × 10⁻¹⁹/ (1.88 ✕ 10⁻²⁸ × 9.8)

= 1.38 × 10⁸

You might be interested in
Calculate the force of gravity on the 0.60- kg mass if it were 1.3×107 m above Earth's surface (that is, if it were three Earth
nignag [31]
The gravitational force between two objects is given by:
F=G \frac{m_1 m_2}{r^2}
where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is their separation

In this problem, the first object has a mass of m_1=0.60 kg, while the second "object" is the Earth, with mass m_2=5.97 \cdot 10^{24}kg. The distance of the object from the Earth's center is r=1.3 \cdot 10^7 m; if we substitute these numbers into the equation, we find the force of gravity exerted by the Earth on the mass of 0.60 kg:
F=G \frac{m_1m_2}{r^2}=(6.67\cdot 10^{-11}) \frac{(0.60 kg)(5.97 \cdot 10^{24} kg)}{(1.3 \cdot 10^7 m)^2}=  1.41 N
5 0
3 years ago
A 99.1-kg baseball player slides into second base. The coefficient of kinetic friction between the player and the ground is μk =
Stels [109]

Answer:

628.022466 N

8.61 m/s

Explanation:

m = Mass

\mu = Coefficient of friction

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s²

F_f=\mu mg\\\Rightarrow F_f=0.646\times 99.1\times 9.81\\\Rightarrow F_f=628.022466\ N

Magnitude of frictional force is 628.022466 N

F=ma\\\Rightarrow a=\frac{F_f}{m}\\\Rightarrow a=\frac{628.022466}{99.1}\\\Rightarrow a=6.33726\ m/s^2

v=u+at\\\Rightarrow 0=u-6.33726\times 1.36\\\Rightarrow u=8.61\ m/s

Initial speed of the player is 8.61 m/s

4 0
3 years ago
If the angular frequency of the motion of a simple harmonic oscillator is doubled, by what factor does the maximum acceleration
Nataly_w [17]

Answer:

When we double the angular velocity the maximum acceleration (a_{max}) will changes by a factor of 4.

Explanation:

Given the angular frequency (\omega) of the simple harmonic oscillator is doubled.

We need to find the change in the maximum acceleration of the oscillator.

a_{max}=A\omega^2

Now, according to the problem, the angular frequency (\omega) got doubled.

Let us plug \omega=2\times \omega. Then the maximum acceleration will be a_{max'}

a_{max}=A\omega^2

a_{max'}=A(2\times \omega)^2\\a_{max'}=A\times 4\omega\\a_{max'}=4A\omega

a_{max'}=4a_{max}

We can see, when we double the angular velocity the maximum acceleration will changes by a factor of 4.

6 0
3 years ago
1. A car travels 36 miles North and then 45 miles East. How far does it
salantis [7]

Answer:

Explanation:

Displacement is the shortest distance or path between two points.

1) Displacement = √(36² + 45²) = 57.63 miles

2) Displacement = √(100² + 500²) = 509.9 meters

3) Displacement = √(60² + 40²) = 72.11 miles

4) Displacement = √(700² + 500²) = 860.23 miles

5) Displacement = 300 - 300 = 0 miles

6) Displacement = 200 + 100 = 300 miles

7) Displacement = √(650² + 650²) = 919.24 miles

8) Yes, since a distance is moved in a direction

6 0
3 years ago
A car travels at a constant rate for 25 miles, going due east for one hour. Then it travels at a constant rate another 60 miles
egoroff_w [7]

60 mph east...........

6 0
3 years ago
Read 2 more answers
Other questions:
  • Which forms of energy are involved when you turn on a desk lamp and the bulb<br> becomes hot?
    6·1 answer
  • Blaise Pascal duplicated Torricelli's barometer using a red Bordeaux wine of density 965 kg/m3 as the working liquid (see figure
    14·1 answer
  • If the density of a diamond is 3.5 g/cm", what would be the mass of a diamond whose
    11·1 answer
  • which of these changes does a submarine encounter as it returns from the bottom of the ocean to the surface of the ocean? a. the
    9·2 answers
  • If a car has an initial velocity of 20 m/s and accelerates at 2.0 m/s2 for 100 m, what is its final velocity?
    12·1 answer
  • What is the best way to describe the rate of motion of an object that changes speed several times over a period of time is to ca
    7·1 answer
  • When did rock layer H form relative to the other rock layers? In your answers, compare layer H to as many rock layers as you can
    6·2 answers
  • HELPP!!!! URGENT!!!!
    11·1 answer
  • A person is 88 J of work lifting a grocery bag straight off the ground to a height of 1.7 m what is a grocery bags mass
    6·1 answer
  • My kitty just past her name was winter :c
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!