Answer:
8 seconds
Explanation:
Since the carspeed is in km/h, we need equal units, so we will make 100.0m 0.1000km.
Then we need to find how long it takes the car to travel 0.1km
We can use the formula distance=speed * time and get
0.1=45 * time
Therefore we get .002222... hours
Multiplying this by 3600 (to get seconds, 60x60), we get 8 seconds
D. How Much Energy Comes From A Bond Breaking.
Answer:


Explanation:
The period of the comet is the time it takes to do a complete orbit:
T=1951-(-563)=2514 years
writen in seconds:

Since the eccentricity is greater than 0 but lower than 1 you can know that the trajectory is an ellipse.
Therefore, if the mass of the sun is aprox. 1.99e30 kg, and you assume it to be much larger than the mass of the comet, you can use Kepler's law of periods to calculate the semimajor axis:
![T^2=\frac{4\pi^2}{Gm_{sun}}a^3\\ a=\sqrt[3]{\frac{Gm_{sun}T^2}{4\pi^2} } \\a=1.50*10^{6}m](https://tex.z-dn.net/?f=T%5E2%3D%5Cfrac%7B4%5Cpi%5E2%7D%7BGm_%7Bsun%7D%7Da%5E3%5C%5C%20a%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BGm_%7Bsun%7DT%5E2%7D%7B4%5Cpi%5E2%7D%20%7D%20%5C%5Ca%3D1.50%2A10%5E%7B6%7Dm)
Then, using the law of orbits, you can calculate the greatest distance from the sun, which is called aphelion:

Lighting gives a sense of scale (The sky)
The answer is D
This is an example of Newton's third law of motion.
The active force is the fish against the water, so the reactive force would be the reverse, the equal force of the water on the fish.