We have millions of alveoli under our lungs, they diffuse oxygen molecules in our blood, then they get transported to every organ of our body through our Heart
Hope this helps!
The vertical component of force exerted by the hi.nge on the beam will be,142.10N.
To find the answer, we need to know more about the tension.
<h3>
How to find the vertical component of the force exerted by the hi.nge on the beam?</h3>
- Let's draw the free body diagram of the system.
- To find the vertical component of the force exerted by the hi.nge on the beam, we have to balance the total vertical force to zero.

- To find the answer, we have to find the tension,

- Thus, the vertical component of the force exerted by the hi.nge on the beam will be,

Thus, we can conclude that, the vertical component of force exerted by the hi.nge on the beam will be,142.10N.
Learn more about the tension here:
brainly.com/question/28106868
#SPJ1
Answer:
10259.6 m
Explanation:
We are given that
Radius of small wheel,r=0.17 m
Radius of large wheel,r'=0.92 m
Initial velocity,u=0
Time,t=2.7 minutes=162 s
1 min=60 s
Velocity,v=10m/s
Time,t'=13.7 minutes=822 s
Time,t''=4.1 minutes=246 s

Substitute the values



Substitute the values




Total distance traveled by rider=s+s'+s''=809.6+8220+1230=10259.6 m
<h2>Question:</h2>
An automobile is driving uphill. Which form of energy is not involved in this process?
<h2>Choosing:</h2>
electromagnetic
potential
kinetic
chemical
<h2>Answer:</h2>
<u>Electromagnetic</u><u> </u>
<h3>
<u>#READINGHELPSWITHLEARNING</u><u> </u></h3><h3>
<u>#CARRYONLEARNING</u><u> </u></h3><h3>
<u>#STUDYWELL</u><u> </u></h3>
Answer:

Explanation:
Given that,
The mass of the paperclip, m = 1.8 g = 0.0018 kg
We need to find the energy obtained. The relation between mass and energy is given by :

Where
c is the speed of light
So,

So, the energy obtained is
.