Answer:
T_final = 279.4 [°C]
Explanation:
In order to solve this problem, we must use the following equation of thermal energy.

where:
Q = heat = 9457 [cal]
m = mass = 79 [g] = 0.079 [kg]
Cp = specific heat = 0.5 [cal/g*°C]
T_initial = initial temperature = 40 [°C]
T_final = final temperature [°C]
![9457 = 79*0.5*(T_{f}-40)\\239.41=T_{f}-40\\\\T_{f}=279.4[C]](https://tex.z-dn.net/?f=9457%20%3D%2079%2A0.5%2A%28T_%7Bf%7D-40%29%5C%5C239.41%3DT_%7Bf%7D-40%5C%5C%5C%5CT_%7Bf%7D%3D279.4%5BC%5D)
Answer:

Explanation:
Since the force applied is parallel to the displacement of the car, the work done on the car is simply given by:

where
F = 1210 N is the force applied on the car
d = 201 m is the displacement of the car
Substituting numbers into the equation, we find:

Answer:
False
Explanation:
Though fiber active cable is based on the concept of internal reflection but it is achieved by refractive index which transmit data through fast traveling pulses of light. It has a layer of glass and insulating casing called “cladding,”and this is is wrapped around the central fiber thereby causing light to continuously bounce back from the walls of the Cable.
Answer:

Explanation:
An adiabatic process refers to one where there is no exchange of heat.
The equation of state of an adiabatic process is given by,

where,
= pressure
= volume

= constant
Therefore, work done by the gas during expansion is,



(using
)
