Answer:
V = V_0 - (lamda)/(2pi(epsilon_0))*ln(R/r)
Explanation:
Attached is the full solution
Work, Kinetic Energy and Potential Energy
6.1 The Important Stuff 6.1.1 Kinetic Energy
For an object with mass m and speed v, the kinetic energy is defined as K = 1mv2
2
(6.1)
Kinetic energy is a scalar (it has magnitude but no direction); it is always a positive number; and it has SI units of kg · m2/s2. This new combination of the basic SI units is
known as the joule:
As we will see, the joule is also the unit of work W and potential energy U. Other energy
1joule = 1J = 1 kg·m2 (6.2) s2
units often seen are:
6.1.2 Work
1erg=1g·cm2 =10−7J 1eV=1.60×10−19J s2
When an object moves while a force is being exerted on it, then work is being done on the object by the force.
If an object moves through a displacement d while a constant force F is acting on it, the force does an amount of work equal to
W =F·d=Fdcosφ (6.3)
where φ is the angle between d and F.
Answer:
4.54
Explanation:
X+10X=50
11X=50
X=4.54#
<h2>please follow me...</h2>
Hydrogen (H) has a molar mass of about 1.007 g/mol and has 1 electron.
Oxygen (O) has a molar mass of about 15.999 g/mol and has 8 electrons.
Then water (H₂O) has a total molar mass of about 18.015 g/mol and has 10 electrons.
30 g of water is the mass of
(30 g) × (1/18.015 mol/g) ≈ 1.66528 mol
of water. Recall that 1 mole is around 6.022 × 10²³ molecules (i.e. Avogadro's number). So 30 g of water is the mass of approximately 1.00285 × 10²⁴ molecules of water.
If each molecule contains 10 electrons, then 30 g of water contains 1.00285 × 10²⁵ ≈ 10²⁵ electrons.
Answer: Science is involved in cooking, eating, breathing, driving, playing, etc. The fabric we wear, the brush and paste we use, the shampoo, the talcum powder, the oil we apply, everything is the consequence of advancement of science. Life is unimaginable without all this, as it has become a necessity.
Explanation: