Answer:
The given vector can be represented in unit vector as

The magnitude of any vector
is given by

Applying values we get

We know that positive x axis in vertorial form is represented as

taking dot product of both the vector's we get

Answer:
1.10134 * 10⁻⁹m⁻¹
Explanation:
K = 680Nm⁻¹
μ = ?
μ = (m₁ + m₂) / m₁m₂
compound = CO
C = 12.0 g/mol = 0.012kg/mol
O = 16.0g/mol = 0.016kg/mol
μ = (m₁ + m₂) / m₁m₂
μ = (0.012 + 0.016) / (0.012*0.016) = 145.83
v = 1/2πc * √(k/μ)
ν = 1/ 2*3.142* 3.0*10⁸ * √(630/145.83)
v = 5.30*10⁻¹⁰ * 2.078
v = 1.10134*10⁻⁹m⁻¹
Answer:
Explanation:
The sound moves in the form of waves. The amplitude is the distance between the highest and the lowest point of a wave. In this way the amplitude indicates the amount of energy that a sound signal contains.
Intensity is the amount of acoustic energy that a sound contains. Intensity is measured in decibels. Volume is a measure of the energy that a signal carries, being a magnitude of intensity.
In this way it is possible to say that the energy of a signal is closely related to its amplitude, but its development over time is also important.
The tone or height is the quality that distinguishes between a high or low sound and a low or high sound.
Answer and Explanation:
Let:

The equation representing a simple harmonic motion, where:

As you may know the derivative of the position is the velocity and the derivative of the velocity is the acceleration. So we can get the velocity and the acceleration by deriving the position:

Also, you may know these fundamental formulas:

Now, using the previous information and the data provided by the problem, let's solve the questions:
(a)

(b)

(c)

(d)
We can extract the phase of the motion, the angular frequency and the amplitude from the equation provided by the problem:

(e)

(f)
